Lets say, for ease, that the vat can hold a total of 70 gallons (or whatever you would like to use.) Use whatever number you want, I just picked this because it gives us a lot of clean numbers.
Now, if the inlet can fill it in 7 hours, that means that it is adding 10 gallons per hour. (70 gal/7 hours = 10 gal/hr)
For the outlet, use the same process, and you find that it drains the vat at 7 gallons per hour.
So, if you subtract the outlet from the inlet, you get 10 - 7 = 3 gallons per hour added.
Now just divide the size of the vat by that number, and you find your answer.
70 gallons / 3 gallons per hour = 23 1/3 hours.
Answer:
n = -14
Step-by-step explanation:
-3(n+9)=15
Distribute -3 to (n+9):
-3n - 27 = 15
Add 27 to both sides:
-3n = 42
Divide both sides by -3:
n = -14
42 ÷ 63
63 -> 420
63x6=378
420-378=42
63->420
So, how many times does 63 go into 42? Well, it doesn't. So put down a zero on your paper, and then a decimal. So if we add a zero onto 42, it becomes 420. Well, 420 is divisible by 63. In fact, 63 goes into 420 6 times, making a total of 378. 420-378 = 42. Then the process begins again. So you've got a 0.6, and that six just keeps on repeating. On paper, you're gonna wanna put a dash over the six to show that it's repeating.
Anyways, the answer is .66 repeating.
Answer:
m∠1=80°, m∠2=35°, m∠3=33°
Step-by-step explanation:
we know that
The sum of the interior angles of a triangle must be equal to 180 degrees
step 1
Find the measure of angle 1
In the triangle that contain the interior angle 1
∠1+69°+31°=180°
∠1+100°=180°
∠1=180°-100°=80°
step 2
Find the measure of angle 2
In the small triangle that contain the interior angle 2
∠2+45°+(180°-∠1)=180°
substitute the value of angle 1
∠2+45°+(180°-80°)=180°
∠2+45°+(100°)=180°
∠2+145°=180°
∠2=180°-145°=35°
step 3
Find the measure of angle 3
In the larger triangle that contain the interior angle 3
(∠3+31°)+69°+47°=180°
∠3+147°=180°
∠3=180°-147°=33°
Is there some other part of this ?