Answer: The answer is D, Coal
hope this helps.
Answer:
17,932.69 g/mol is the molecular weight of the substance.
Explanation:
Using Beer-Lambert's law :
Formula used :
where,
A = absorbance of solution = 1.04
c = concentration of solution =?
l = length of the cell = 1 cm
= molar absorptivity of this solution = 18,650 
Now put all the given values in the above formula, we get the molar absorptivity of this solution.
c = 

V = Volume of the solution in L
Molecular weight of the substance = x
V = 100 mL = 0.1 L
Mass of the substance = 100 mg = 0.1 g

x = 17,932.69 g/mol
17,932.69 g/mol is the molecular weight of the substance.
Answer:
the solubility of the ionic solid decreases
Explanation:
If a salt MX is added to an aqueous solution containing the solute AX, the X^- ion is common to both of the salts. The presence of X^- in the solution will suppress the dissolution of AX compared to the solubility of AX in pure water. This observation is known as common ion effect in chemistry.
The origin of common ion effect is based on Le Chatelier's principle. The addition of a solute will drive the equilibrium position towards the left hand side.
Answer:
0.0900 mol/L
Explanation:
<em>A chemist makes 330. mL of nickel(II) chloride working solution by adding distilled water to 220. mL of a 0.135 mol/L stock solution of nickel(II) chloride in water. Calculate the concentration of the chemist's working solution. Round your answer to significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.135 mol/L
- Initial volume (V₁): 220. mL
- Final concentration (C₂): ?
- Final volume (V₂): 330. mL
Step 2: Calculate the concentration of the final solution
We prepare a dilute solution from a concentrated one. We can calculate the concentration of the working solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁/V₂
C₂ = 0.135 mol/L × 220. mL/330. mL = 0.0900 mol/L