Answer:
9
Step-by-step explanation:
Let the two perfect cubes be x and y where x > y.
According to the given conditions:
![{x}^{3} - {y}^{3} = 386...(1) \\ y = 7...(2) \\ plug \: y = 7 \: in \: equation \: (1) \\ {x}^{3} - {7}^{3} = 386 \\ {x}^{3} - 343 = 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 343 + 386 \\ {x}^{3} = 729 \\ x = \sqrt[3]{729} \\ x = 9](https://tex.z-dn.net/?f=%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7By%7D%5E%7B3%7D%20%20%3D%20386...%281%29%20%5C%5C%20y%20%3D%207...%282%29%20%5C%5C%20plug%20%5C%3A%20y%20%3D%207%20%5C%3A%20in%20%5C%3A%20equation%20%5C%3A%20%281%29%20%5C%5C%20%20%7Bx%7D%5E%7B3%7D%20%20-%20%20%7B7%7D%5E%7B3%7D%20%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20-%20%20343%20%3D%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%20%20%3D%20343%20%20%2B%20%20386%20%5C%5C%20%7Bx%7D%5E%7B3%7D%20%20%20%3D%20729%20%5C%5C%20x%20%3D%20%20%5Csqrt%5B3%5D%7B729%7D%20%20%5C%5C%20x%20%3D%209)
Thus the cube root of the larger number is 9.
the marked angles are complementary → B
All 3 triangles are right with one angle = 90°
the sum of the angles in a triangle = 180°
thus the remaining 2 marked angles sum to 90°, thus are complementary
Let t represent Todd's age now.
.. 4(t -3) -(t -3) = 81 . . . . . . 3 years ago, their differnce in ages was 81.
.. 3t -9 = 81
.. t = (81 +9)/3 = 30
Todd is 30 now.
_____
You can also work this by considering "ratio units." 3 years ago, the ratio of their ages was 4:1, a difference of 3. That difference corresponds to 81 years, so each "ratio unit" represents 81/3 = 27 years. Todd's age then was 1 ratio unit, 27 years. Now, Todd's age is 30.
Answer:
x = price of balcony tickets = $7
y = price of orchestra tickets = $21
Step-by-step explanation:
Let
x = price of balcony tickets
y = price of orchestra tickets
y = 3x (1)
148y + 76x = 3,640 (2)
Substitute y = 3x into (2)
148y + 76x = 3,640 (2)
148(3x) + 76x = 3,640
444x + 76x = 3,640
520x = 3,640
x = 3,640/520
x = 7
Substitute x = 7 into (1)
y = 3x (1)
y = 3(7)
y = 21
x = price of balcony tickets = $7
y = price of orchestra tickets = $21