Answer:
F = 1.608 x 10⁻¹⁴ N
Explanation:
Given,
The velocity of the electron, v = 10⁷ m/s
The electric field intensity, E = 10⁵ V/m
The magnetic flux density, B = 0.5 gauss
= 5 x 10⁻⁵ tesla
The magnitudes of the electric and magnetic forces on an electron is given by the Lorentz force,
F = q (E + v x B)
Substituting the given values,
F = 1.6 x 10⁻¹⁹ (10⁵ + 10⁷ x 5 x 10⁻⁵)
F = 1.608 x 10⁻¹⁴ N
Hence, the magnitudes of the electric and magnetic forces on an electron is, F = 1.608 x 10⁻¹⁴ N
Answer:False
Explanation:Sound waves need a mediun
Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s
Answer:
200 mL
Explanation:
Given that,
Initial volume, V₁ = 300 mL
Initial pressure, P₁ = 0.5 kPa
Final pressure, P₂ = 0.75 kPa
We need to find the final volume of the sample if pressure is increased at constant temperature. It is based on Boyle's law. Its mathematical form is given by :

V₂ is the final volume

So, the final volume of the sample is 200 mL.
Answer:
I guess the answer was d.The current at P is greater than the current at Q...