Alrighty, so, houses can be destroyed, people can be killed, animals can be killed, habitats can be destroyed, and trees can be uprooted. Tornadoes can create massive damage.
Hope this helps! (:
Answer:
Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives
For the y-direction gives
Combining both equation yields the y_component of the final velocity
Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
Answer:C..net work done on the object.
Explanation:
Answer:
nope don't think so
Explanation:
the heat causes the molecules to move faster therefore expanding in watever it the air is in
The only graph that accurately depict the given motion is graph D.
The given parameters;
- initial position of the man = 0
- direction of the man's first displacement = backward
- time of first motion, t₁ = 6 seconds
- velocity of this first displacement = v₁
- time without any motion (<em>zero movement</em>) = 6 seconds
- direction of the second displacement = forward
- velocity of second displacement = 2v₁
Let the acceleration of the first displacement = a
Acceleration of the second displacement = 2a
From the given graphs we can eliminate every graph without initial decrease or motion towards the negative direction.
The only options with initial motion towards the negative direction are;
The difference between graph B and D;
- in graph B there is a uniform motion for 6 seconds
- in graph D there is no motion for 6 seconds (<em>this is obvious as the line fall directly on top of the horizontal axis maintaining a value of zero for 6 seconds</em>).
Thus, the only graph that accurately depict the given motion is graph D.
Learn more here: brainly.com/question/21095906