Your answer is 500, review the image I created to understand how I got my answer.
There are 10 chips altogether. 4 of them are white.
4/10 is the chance of lifting out a white chip
There are 3 of them left and 9 chips altogehter.
4/10 * 3/9
12/90
4/30
2/15
Comment
(my edit) it is not that 2/15 is wrong (although it is not entirely right).
1/3 is the correct answer if you assume that what happened during the first draw has nothing to do with what will happen on the second. It is like saying if you throw 11 heads in a row with a fair coin, what are the chances of throwing a heads on the 12th throw? The answer is 1/2. That is the same kind of question you have asked.
The two of us who have responded have really responded to what are the chances of drawing 2 white chips. The question really does not restrict us in a way that prevents us from saying that. I'll stick with
B <<<< answer
but I think it would be nice if the writer of the question made it clear that 1/3 should be the proper answer. I am glad you came back and posted the right answer. It makes me think.
The semi right answer is B <<<<----
If my reasoning bothers anybody, I'll reedit again. I'm only leaving it because sometimes a mistake is more instructive than a given answer.
Answer:
A
Step-by-step explanation:
Using the sine ratio in the right triangle
sin40° =
=
= 
Multiply both sides by 7, thus
AC = 7sin40° → A
I believe it's 3 because 4 times 3 equals 12 and 12 plus 8 equals 20!
4(3)+8=20
Hoped this helped! :)
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15