1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Find y' if y= In (x2 +6)^3/2 y'=

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
6
Nata [24]

Answer:

400,000km is represented as 8cm on the map!!!

Step-by-step explanation:

1cm=50000km

8cm=x

Criss cross

1cmx=8cm×50000km

divide both side with 1cm

x=8×50000km

x=400,000km

5 0
2 years ago
| 5 What factors do 8 and 12 have in common?
Shalnov [3]
1,2,and 4 are factors that 8 & 12 have in common
5 0
3 years ago
The eighth-grade class is planning a trip to Washington, D.C. this spring. They need a minimum of
Hoochie [10]

Answer:

There needs to be 174 Students in the 8th grade class.

Step-by-step explanation:

173(1/3) is 58

58+17=75

3 0
2 years ago
I need help ASAP!!!please help
muminat
Use 6 triangles then 2 square so you will only be using a total of 4 square and 12 triangles
8 0
2 years ago
Define a variable and write an equation for each real-world problem. 1] Matt spent $ 6.50 on his lunch. This is $2.25 more than
sleet_krkn [62]
M will represent Matt and J is Jackson.  M-2.25=J. You minus the difference between them and show that it equals to Jacksons. A variable is a number in math that can vary.
8 0
2 years ago
Other questions:
  • Find the equation of the line with the slope 1/2 which goes through the point (6,-3)
    14·1 answer
  • The sum of the square of a positive number and the square of 3 more than the number is 89. What is the​ number?
    6·1 answer
  • What equals 11\4 cups in to bake a cake
    13·2 answers
  • Can some one help me
    9·2 answers
  • A car travels 30 miles in 1/2 hour. What is the average speed at which the car is traveling in miles
    15·1 answer
  • Misty correctly determined the equation of the linear function represented by the table of values below to be y = negative 2 x +
    10·1 answer
  • The height of 5 boys is 5.4 ft, 6.12 ft., 7.02 ft. 4.9 ft, and 6.25 ft. What is the average
    9·2 answers
  • Please help me with this ​
    15·1 answer
  • PLese help!! thank you
    13·1 answer
  • Put the following equation of a line into slope-intercept form, simplifying all fractions. 2x-10y=-20
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!