1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Find y' if y= In (x2 +6)^3/2 y'=

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
This question is not that hard but I’m getting rushed
Vsevolod [243]
14:21 one is the right answer
4 0
3 years ago
Please I need help with this I don't understand my teacher gave us a valentines day assignment like what the heck I seriously do
Helen [10]

Answer:

A) 5x = y

B) 2x \leq 100

Step-by-step explanation:

A is 5x = y because there are 5 pink hearts per the number of boxes (x) bought.

B uses the equation 2x is less than or equal to 100 because the teacher is spending 2 dollars per kid and can spend a maximum of 100.

The graph for this is attached.

6 0
3 years ago
Whats 1+1 please I really need to ask this for 0 reason other than boredom
natta225 [31]

Answer:2

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Suzan bought some balloons and repacked them for sale. He threw away 76 balloons each. Each packet was sold at $86. After sellin
In-s [12.5K]

Answer:

188 balloons

Step-by-step explanation:

First, we have to divide the amount he collected altogether by the price of each balloon that he sold to find out how many balloons he sold:

9632 / 86 = 112 balloons

She sold 112 balloons.

We know that she threw 76 balloons away, therefore, the number of balloons she bought was:

112 + 76 = 188 balloons

4 0
3 years ago
PLz help me
zysi [14]

Answer:

The laboure was charging 22% per hour

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Help please? match each system of linear equation with the correct numbers of solutions ​
    12·1 answer
  • How can you express (15 + 30) as a multiple of a sum of whole numbers with no common factor?
    10·2 answers
  • A triangle has vertices at (-1,5), (4,2), and (0,0). What is the perimeter of the triangle
    9·1 answer
  • Helppp! Please! thank you!!!!!!
    6·1 answer
  • Solve the inequality.
    8·2 answers
  • Find the x in the following triangle <br> I’ll give brainliest
    13·1 answer
  • (WILL GIVE BRAINLYIST IF ANSWER IS RIGHT!)
    11·1 answer
  • Help please urgenttt
    10·1 answer
  • What is the volume of a hemisphere with a diameter of 56.7 in, rounded to the
    11·1 answer
  • This question is about two positive numbers. Here are facts about these numbers:The numbers are consecutive even integers.The su
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!