1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Find y' if y= In (x2 +6)^3/2 y'=

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Find the distance between the points
Tasya [4]

Answer:

5 units

Step-by-step explanation:

Calculate the distance d using the distance formula

d = \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2    }

with (x₁, y₁ ) = (2, 1) and (x₂, y₂ ) = (6, 4)

d = \sqrt{(6-2)^2+(4-1)^2}

   = \sqrt{4^2+3^2}

   = \sqrt{16+9}

    = \sqrt{25}

    = 5

3 0
3 years ago
Read 2 more answers
20 points, asap please!
devlian [24]
H(x)=-3,1 I think hope this helps
4 0
3 years ago
Read 2 more answers
D₁ vide using x² - 2x² 2× +3× -5 by ×-3 using synthetic division. <br>​
Vaselesa [24]

Answer:

Step-by-step explanation:

I think you are trying to use synthetic division for

x^{4} -2x^{3} -2x^{2} +3x-5 divided by x-3

First  

x -3 = 0 , make it equal to 0 and add 3 to both sides

x = 3

Then we write all the coefficients and continue with

a pattern of multiply by 3 and add to the next coefficient.

See attachment.

5 0
1 year ago
What is the mean of 65,30,25
mixas84 [53]
You've got 3 values there.

Get the sum of 65, 30 and 25 and divide their sum by the number of values that exist, which in this case is 3.

\frac { 65+30+25 }{ 3 } =\frac { 120 }{ 3 } =40

Answer:

40
5 0
3 years ago
Read 2 more answers
Here is an expression: 3 • 2t
leva [86]

Answer:

1. 6

2. 24

Step-by-step explanation:

Substitute in the values for <em>t</em> and solve the expression.

3 0
3 years ago
Read 2 more answers
Other questions:
  • three bags of potatoes and four cases of corn cost $40. Five bags of potatoes and two cases of corn cost $34. Find the cost of o
    14·2 answers
  • Carlos used the drawing below to help explain how he found the area of the right triangle. Which expression shows the correct pr
    10·1 answer
  • Coefficient and term of 8x-20y-10
    6·2 answers
  • If 160 is divided by x, then the remainder is 4. What is the remainder when 315 is divided by x?
    11·1 answer
  • Find the value of x in the equation 2(x – 3) + 5x = 5(2x + 6).
    10·2 answers
  • Which describes the slope of this line?
    9·2 answers
  • What is straight is part of a line and has two endpoints
    7·1 answer
  • Students at a cooking school made a supersized rectangular pizza for a class party. Lupita cut the pizza into 3 equal pieces. Th
    12·1 answer
  • Can someone help me ?!
    8·1 answer
  • P(Music/Drama) round to the nearest percent
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!