1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Find y' if y= In (x2 +6)^3/2 y'=

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Jillian measured the distance around a small fish pond as 27 yards. Which would be a good estimate for the distance across the p
DochEvi [55]
Assuming the fish pond is round, what you're given is the circumference.
So you know that 2<span>πr = 27.
We want to solve for the diameter, or d = 2r. We should isolate that.
2r = 27/</span><span>π
2r = 8.59 yards, or ~9 yards.</span>
3 0
3 years ago
Someone help me please!!!
dusya [7]

Answer:

Its upside down.

Step-by-step explanation:

8 0
3 years ago
CAN WE JUST TALKKK CAN WE JUST TALKKK CAN WE JUST MOVE A LITTLE SLOWER SO WE DONT GET LOST CANT WE JUST CANT WE JUST TALK SO WE
Diano4ka-milaya [45]
Ahahah ^-^




have a good day
5 0
3 years ago
Read 2 more answers
X value pls <br><img src="https://tex.z-dn.net/?f=3%28%20%5Cfrac%7B1%7D%7B6%7D%20x%20%5Ctimes%209%29%20%3D%20%20%5Cfrac%7B1%7D%7
Olenka [21]

Answer: x=

-27/4

-6.75

-6 3/4

. . . . . . . . . . . . . . .

4 0
2 years ago
Read 2 more answers
Find the perimeter of a square with sides that measure 3.3 m.
Oduvanchick [21]
13.2 m. is the answer. Hope this helps you! 
5 0
3 years ago
Other questions:
  • Two angles are drawn below. the measure of angle x is 90<br><br>a. 20<br>b. 60<br>c. 100<br>d. 120
    15·2 answers
  • What is the rule for the reflection?
    7·1 answer
  • A pole, 4m high, stands, vertically, on
    13·1 answer
  • Suppose the diameter of a circle is 6 units.what is its circumference?
    13·1 answer
  • Please help me I can’t find the answer
    11·1 answer
  • Catty has 6 cookies Shelly takes away 3 how many cookies does Catty have left
    15·2 answers
  • 2p(7p+7) please answer
    9·2 answers
  • Susan reads a book at a rate of 1 page every 3 minutes. If her reading rate remains the same, which method could be used to dete
    11·2 answers
  • WILL GIVE BRAINLIEST
    9·2 answers
  • Each cheerleading uniform includes a shirt and a skirt. Shirts cost $17 each and skirts cost $19 each. The expression 17u + 19u
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!