1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
12

Find y' if y= In (x2 +6)^3/2 y'=

Mathematics
1 answer:
Schach [20]3 years ago
3 0

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
How can you compare two fractions? Use complete sentences.
SOVA2 [1]

Answer:

You can simplify the fraction to get the most simplified answer then you can compare them or multiply the top or the bottom of the fraction to start comparing the fractions.

Step-by-step explanation:

6 0
3 years ago
Find the center-radius form of the equation of the circle described.
Kitty [74]

Answer:

Correct answer:  (x-√2)² + (y-√5)² = 3

Step-by-step explanation:

Given data: Center (x,y) = (√2,√5) and r = √3

The canonical or cartesian form of the equation of the circle is:

( x-p )² + ( y-q )² = r²  

Where p is the x coordinate of the center, q is the y coordinate of the center and r is the radius of the circle.

God is with you!!!

8 0
3 years ago
Use the product rules to complete these statements
svet-max [94.6K]
Well can you put a pic
8 0
2 years ago
Is the equation true, false, or open? Explain. -9a + 3 = -9a + 3* 5
Sholpan [36]

Answer:

the answer is false because 3 is multiplied with 5 on the right side

Then, when substitute any number , there remain difference

8 0
3 years ago
Can someone please help
Natasha_Volkova [10]

Answer:

-6 degrees F

Step-by-step explanation:

We start with -8F as the temperature. It fell 10 degrees to 2F, then fell 8 degrees to -6F.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Yellowcab Taxi charges a $1.75 flat rate in addition to $0.45 per mile. Katie has no more than $12 to spend on a ride. What is m
    8·1 answer
  • Find the coordinites of the midpoint of the segment with the given endpoints. -9 and 4
    6·1 answer
  • What single decimal multiple would you use to increase by 3% followed by a 9% in crease
    14·1 answer
  • Annual starting salaries for college graduates is unknown. Assume that a 95% confidence interval estimate of the population mean
    11·1 answer
  • Find m<br> •23<br> •43<br> •65<br> •67
    11·2 answers
  • What is the area of this trapezoid?
    15·1 answer
  • The figure below has what type of symmetry?
    6·1 answer
  • Evaluate: 5/6 + 4/9 =___?​
    14·2 answers
  • Math Help Part 4 (Please Help)
    6·2 answers
  • Mr. Chung drove 248 miles in 4 hours. If he continues driving at the same speed, how many miles will Mr.Chung drive in 6 hours?​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!