66 for the first and 36 for the other one
16in I believe irdk
Hope it helped..
I can’t really graph on this but place a dot on the four on the y axis and go up one and over two and place a dot there. just keep repeating it till u get to the end of the graph :)
Answer:
4.39% theoretical probability of this happening
Step-by-step explanation:
For each coin, there are only two possible outcomes. Either it lands on heads, or it lands on tails. The probability of a coin landing on heads is independent of other coins. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
Theoretically, a fair coin
Equally as likely to land on heads or tails, so 
10 coins:
This means that 
What is the theoretical probability of this happening?
This is P(X = 2).


4.39% theoretical probability of this happening
Square x first then add x then subtract by 2