Answer: Both cannonballs will hit the ground at the same time.
Explanation:
Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.
then the acceleration equation is only on the vertical axis, and can be written as:
a(t) = -(9.8 m/s^2)
Now, to get the vertical velocity equation, we need to integrate over time.
v(t) = -(9.8 m/s^2)*t + v0
Where v0 is the initial velocity of the object in the vertical axis.
if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s
and:
v(t) = -(9.8 m/s^2)*t
Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)
And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.
You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)
Answer:

Explanation:
We are given that







We have to find the exit temperature.
By steady energy flow equation



Substitute the values




It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery
Answer:
12.4 m/s²
Explanation:
L = length of the simple pendulum = 53 cm = 0.53 m
n = Number of full swing cycles = 99.0
t = Total time taken = 128 s
T = Time period of the pendulum
g = magnitude of gravitational acceleration on the planet
Time period of the pendulum is given as


T = 1.3 sec
Time period of the pendulum is also given as


g = 12.4 m/s²
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.