1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
14

An object moving due west collides with a second object that is initially at rest. Just after the collision the first object is

moving toward the southeast. Just after the collision the second object must be moving toward the
Physics
1 answer:
ICE Princess25 [194]3 years ago
8 0

Answer: Northwest.

Explanation:

After the collision the second object which was at rest would change its direction and move towards the Northwest. The object in motion was coming from the east and traveling towards the west, where it deflects against a stationery object which changes its direction to southeast. And the object which was at rest moves toward the northwest.

You might be interested in
1pt A cannon fires a 5-kg ball horizontally from a
Klio2033 [76]

Answer: Both cannonballs will hit the ground at the same time.

Explanation:

Suppose that a given object is on the air. The only force acting on the object (if we ignore air friction and such) will be the gravitational force.

then the acceleration equation is only on the vertical axis, and can be written as:

a(t) = -(9.8 m/s^2)

Now, to get the vertical velocity equation, we need to integrate over time.

v(t) = -(9.8 m/s^2)*t + v0

Where v0 is the initial velocity of the object in the vertical axis.

if the object is dropped (or it only has initial velocity on the horizontal axis) then v0 = 0m/s

and:

v(t) = -(9.8 m/s^2)*t

Now, if two objects are initially at the same height (both cannonballs start 1 m above the ground)

And both objects have the same vertical velocity, we can conclude that both objects will hit the ground at the same time.

You can notice that the fact that one ball is fired horizontally and the other is only dropped does not affect this, because we only analyze the vertical problem, not the horizontal one. (This is something useful to remember, we can separate the vertical and horizontal movement in these type of problems)

7 0
3 years ago
Steam enters a well-insulated nozzle at 200 lbf/in.2 , 500F, with a velocity of 200 ft/s and exits at 60 lbf/in.2 with a velocit
Ede4ka [16]

Answer:

386.2^{\circ}F

Explanation:

We are given that

P_1=200lbf/in^2

P_2=60lbf/in^2

v_1=200ft/s

v_2=1700ft/s

T_1=500^{\circ}F

Q=0

C_p=1BTU/lb^{\circ}F

We have to find the exit temperature.

By steady energy flow equation

h_1+v^2_1+Q=h_2+v^2_2

C_pT_1+\frac{P^2_1}{25037}+Q=C_pT_2+\frac{P^2_2}{25037}

1BTU/lb=25037ft^2/s^2

Substitute the values

1\times 500+\frac{(200)^2}{25037}+0=1\times T_2+\frac{(1700)^2}{25037}

500+1.598=T_2+115.4

T_2=500+1.598-115.4

T_2=386.2^{\circ}F

7 0
4 years ago
How can a magnetic field be produced, using a wire, a battery, and and a nail?
Aleks [24]
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery
5 0
3 years ago
Read 2 more answers
After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 53.0 cm . The explorer finds that
larisa86 [58]

Answer:

12.4 m/s²

Explanation:

L = length of the simple pendulum = 53 cm = 0.53 m

n = Number of full swing cycles = 99.0

t = Total time taken = 128 s

T = Time period of the pendulum

g = magnitude of gravitational acceleration on the planet

Time period of the pendulum is given as

T = \frac{t}{n}

T = \frac{128}{99}

T = 1.3 sec

Time period of the pendulum is also given as

T = 2\pi \sqrt{\frac{L}{g}}

1.3 = 2(3.14) \sqrt{\frac{0.53}{g}}

g = 12.4 m/s²

4 0
3 years ago
Use the ratio version of Kepler’s third law and the orbital information of Mars to determine Earth’s distance from the Sun. Mars
zhuklara [117]

Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.

The distance of the earth from the sun is 1.50 \times 10^{11}\;\rm m.

<h3>What is Kepler's third law?</h3>

Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

T^2 \propto R^3

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.

By using Kepler's third law, this can be written as,

T^2 \propto R^3

T^2 = kR^3

Substituting the values, we get the value of constant k for mars.

687^2 = k\times (2.279 \times 10^{11})^3

k = 3.92 \times 10^{-29}

The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.

365^3 = 3.92\times 10^{-29} R^3

R^3 = 3.39 \times 10^{33}

R= 1.50 \times 10^{11}\;\rm m

Hence we can conclude that the distance of the earth from the sun is 1.50 \times 10^{11}\;\rm m.

To know more about Kepler's third law, follow the link given below.

brainly.com/question/7783290.

6 0
3 years ago
Other questions:
  • Free electrons may be transferred between bodies by:
    13·2 answers
  • If you cannot get a chair to move across the floor, it is because ___ friction opposes your push.
    8·1 answer
  • An infinite line of charge produces a field of magnitude 4.90 ✕ 104 n/c at a distance of 1.9 m. calculate the linear charge dens
    7·1 answer
  • At the same instant that a 0.50-kg ball is dropped from 25m above Earth,? At the same instant that a 0.50-kg ball is dropped fro
    15·1 answer
  • an object of 30kg is in free fall in a vacuum where there is no air resistance. Determine the acceleration of the object.
    11·1 answer
  • Describes at least three everyday things that exist or occur because of science
    7·1 answer
  • Find the magnitude of the torque produced by a 4.5 N force applied to a door at a perpendicular distance of 0.26 m from the hing
    10·1 answer
  • A car accelerates from rest at 5.75m/s2 for 4.4 sec when it runs out of pavement and runs into some mud. In the mud it accelerat
    6·1 answer
  • Bernie is driving down a highway at 28m/s. When bernie approaches a stop light, he presses on his brakes to bring his car to a s
    14·1 answer
  • Use the scenario below for questions 4-7.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!