Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Answer:
<h2>20 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>20 m/s²</h3>
Hope this helps you
Answer:
16.63min
Explanation:
The question is about the period of the comet in its orbit.
To find the period you can use one of the Kepler's law:

T: period
G: Cavendish constant = 6.67*10^-11 Nm^2 kg^2
r: average distance = 1UA = 1.5*10^11m
M: mass of the sun = 1.99*10^30 kg
By replacing you obtain:

the comet takes around 16.63min
<h2><em>So there is two truths given. After an amount of time Ttotal (lets call it ‘t’):
</em></h2><h2><em>
</em></h2><h2><em>The car’s speed is 25m/s
</em></h2><h2><em>The distance travelled is 75m
</em></h2><h2><em>Then we have the formulas for speed and distance:
</em></h2><h2><em>
</em></h2><h2><em>v = a x t -> 25 = a x t
</em></h2><h2><em>s = 0.5 x a x t^2 -> 75 = 0.5 x a x t^2
</em></h2><h2><em>Now, we know that both acceleration and time equal for both truths. So we can say:
</em></h2><h2><em>
</em></h2><h2><em>t = 25 / a
</em></h2><h2><em>t^2 = 75 / (0.5 x a) = 150 / a
</em></h2><h2><em>Since we don’t want to use square root at 2) we go squared for 1):
</em></h2><h2><em>
</em></h2><h2><em>t^2 = (25 / a) ^2 = 625 / a^2
</em></h2><h2><em>t^2 = 150 / a
</em></h2><h2><em>Since t has the same value for both truths we can say:
</em></h2><h2><em>
</em></h2><h2><em>625 / a^2 = 150 / a
</em></h2><h2><em>
</em></h2><h2><em>Thus multiply both sides with a^2:
</em></h2><h2><em>
</em></h2><h2><em>625 = 150 x a, so a = 625 / 150 = 4.17
</em></h2><h2><em>
</em></h2><h2><em>We can now calculate t as well t = 25 * 150 / 625 = 6</em></h2>