<u>Answer:</u>
The probability of getting two good coils when two coils are randomly selected if the first selection is replaced before the second is made is 0.7744
<u>Solution:</u>
Total number of coils = number of good coils + defective coils = 88 + 12 = 100
p(getting two good coils for two selection) = p( getting 2 good coils for first selection )
p(getting 2 good coils for second selection)
p(first selection) = p(second selection) = 
Hence, p(getting 2 good coil for two selection) = 
Answer:
Let the Dulcina's collection be 'x'
Let the Tremaine collection be 'x-39'
x + x - 39 =129
2x = 129 +39
2x = 168
x = 168/2
x = 84
Dulcina's collection = x = 84
Tremaine's collection = x - 39 = 84 - 39 = 45
5x²+y²=3
by implicit differentiation we shall have:
10x+2yy'=0
the second derivative will be:
10+2y"=0
2y"=-10
y"=-5
Answer:
3 and 4
1 and 3
Step-by-step explanation:
This is because these are vertical angles so anything on one side is the same on the other in these words Congruent. Good luck.