Problem 1:
1) 3/5x-1 x 3/4=9/10
3x/5-1 x 3/4=9/10
2) 3x/5-1 x 3/4=9/10
3x/5-3/4=9/10
3) 3x/5-3/4=9/10
+3/4 +3/4
4) 3x/5=33/20
5) 5 x 3x/5= 5 x (33/20)
6) 3x=33/4
7) 3x=33/4
/3 /3
8) x=11/4
Problem 2:
1) 6/7+2/5x=-4/5
6/7+2x/5=-4/5
2) 6/7+2x/5=-4/5
-6/7 -6/7
3) 2x/5= --58/35
4) 5 x 2x/5= 5 x (--58/35)
5) 2x= --58/7
6) 2x= --58/7
/2 /2
x= --29/7
B. 25 Km. The measure of BC is 25 km.
The easiest way to solve this problem is using the cosine theorem c = √a²+b²-2ab*cos A.
BC = √AC²+AB²-2(AC)(AB)*cos A
BC = √(21km)²+(14km)²-2(21km)(14km)*cos 89°
BC = √441km²+196km²-588km²*(0.017)
BC =√637km²-10.26km²
BC = √636.74km²
BC = 25.03km ≅ 25
Answer:
C
Step-by-step explanation:
You can write the equation like this:
A - 2.5 = 1.5
If you reverse the equation, it looks like this:
1.5 - 2.5 = A
1.5 - 2.5 = 4
A = 4
Rates like $ per channel is a slope, "m". The added fee is a constant so it's the intercept "b".
y = mx + b
So for the first problem (9)
(a)
y = total cost in dollars
x = number of premium channels
y = 16x + 44
(b) when x = 3 channels
y = 16(3) + 44
y = 92 $
the second problem (10)
(a) every 4 years the tree grows by 12-9=3 ft
So the unit rate or slope will be 3 ft per 4 yrs, (3/4). You can see this also by solving for slope "m" using the given points (4,9) and (8,12).
x = number of years
y = height of tree in ft
y = (3/4)x + b
use one of the points to find the y-intercept "b".
9 = (3/4)(4) + b
9 = 3 + b
9 - 3 = b
6 = b
y = (3/4)x + 6
(b) when x = 16
y = (3/4)(16) + 6
y = 12 + 6
y = 18 ft
Here's one shortcut:
2.3×10^9=1000(2.3×10^6) because your adding 3 more zeros to 2300000