Can you post the image of the question?
So there for i can help
Answer:
READ VERY CAREFULLY
Step-by-step explanation:
Relate area to the operations of multiplication and addition. a Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths
Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b+c is the sum of a×b and a×c. Use area models to represent the distributive property in mathematical reasoning.
Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.
Your answer should be D because 13-10=3 and 10-3=7 (2, 7)!
Answer: 117.6° ; 32.4° .
_________________________
Explanation:
_______________________________________________________
Note: ALL triangles, by definition, have exactly 3 (THREE) sides and exactly 3 (THREE) angles.
_____________________
We are given the following:
_______________________
We have a triangle.
Angle 1: m∡1 = (8x) ;
Angle 2: m∡2 = (2x + 3) ;
Angle 3: m∡3 = 30.
______________________________________
We are asked to find: "m∡1" and " m∡2" .
______________________________________
Note: In ALL TRIANGLES, the measurements of all THREE (3) angles ALWAYS add up to 180 degrees.
________________________________________
So, " m∡1 + m∡2 + m∡3 = 180 " .
________________________________________
Let us substitute our given values for the measurements in EACH of
the THREE (3) angles — on the left-hand side of the equation; then solve for "x" ; then substitute that solved value for "x" into the given expressions for BOTH "m∡1" AND "m∡2" ; to find the values for " m∡1" AND " m∡2 " ; which are the values asked for in this very question ;
___________________________________________
m∡1 + m∡2 + m∡3 = 180 ;
___________________________________________
8x + (2x + 3) + 30 = 180 ;
___________________________________________
8x + 2x + 3 + 30 = 180 ;
___________________________________________
Combine the "like terms" on the 'left-hand side" of the equation; to simplify:
____________________________________________________________
+8x + 2x = +10x ;
___________________________________________
+3 + 30 = +33 ;
___________________________________________
Rewrite the entire equation, as:
___________________________________________
10x + 33 = 180 ;
___________________________________________
Now, subtract "33" from EACH SIDE of the equation:
___________________________________________
10x + 33 − 33 = 180 −<span> 33 ;
___________________________________________
to get:
___________________________________________
10x = 147 ;
____________________________________________
Now, divide EACH side of the equation by "10" ; to isolate "x" on ONE SIDE of the equation; and to solve for "x" :
____________________________________________
10x / 10 = 147 / 10 ;
____________________________________________
to get:
____________________________________________
x = 14.7 ;
___________________________________________
Now, given the following, we plug in our solved value, "14.7", for "x", into the expression given for "m</span>∡1" and "m∡2"; as follows:
________________________________________________
Angle 1: "(8x)" = 8*(14.7) = 117.6° ;
________________________________________________
Angle 2: "2x + 3" = 2*(14.7) + 3 = 29.4 + 3 = 32.4° ;
________________________________________________
These are the two answers; that is the 2 (TWO) values asked for in the question: 117.6° ; 32.4° .
<span>____________________________________</span><span>
Do they make sense? That is, do the measurements of ALL 3 (THREE) angles; that is, our two solved measurements added together, and then added to the value of the third angle (given: "m</span>∡3 = 30°); all add up to 180° ?
___________________________________________
Let us check:
_______________________________
m∡1 + m∡2 + m∡3 = 180 ;
_______________________________
Plugging in our solved values for "m∡1" and "m∡2" ; and our given value: "30" — for "m∡3 — does the equation hold true?
______________________________________________
→ 117.6 + 32.4 + 30 = ? 180 ??
______________________________________________
→ 117.6 + 32.4 = 150 ; → 150 + 30 =? 180 ? Yes!
______________________________________________