Answer:
molarity = 0.385 moles/kg
Explanation:
Assume that the volume of the aqueous solution given is 1 liter = 1000 ml
Now, density can be calculated using the following rule:
density = mass / volume
Therefore:
mass = density * volume = 1.23 * 1000 = 1230 grams
Now, 0.467 m/L * 1L = 0.467 moles of HCl
We will get the mass of the 0.467 moles of HCl as follows:
mass = molar mass * number of moles = (1+35.5)*0.467 = 17.0455 grams
Now, we have the mass of the solution (water + HCl) calculated as 1230 grams and the mass of the HCl calculated as 17.0455 grams. We can use this information to get the mass of water as follows:
mass of water = 1230 - 17.0455 = 1212.9545 grams
Finally, we will get the molarity as follows:
molarity = number of moles of solute / kg of solution
molarity = (0.467) / (1212.9594*10^-3)
molarity = 0.385 mole/kg
Hope this helps :)
Answer:
Explanation:
1) Given data:
Number of moles of lead = 4.3×10⁻³ mol
Mass of lead = ?
Solution:
Mass = number of moles × molar mass
Molar mass of lead = 207.2 g/mol
Mass = 4.3×10⁻³ mol × 207.2 g/mol
Mass = 890.96 g
2) Given data:
Number of atoms of antimony = 3.8×10²² atoms
Mass of antimony = ?
Solution:
1 mole contain 6.022 ×10²³ atoms
3.8×10²² atoms × 1 mol / 6.022 ×10²³ atoms
0.63×10⁻¹ mol
0.063 mol
Mass = number of moles × molar mass
Molar mass of lead = 121.76 g/mol
Mass = 0.063 mol × 121.76 g/mol
Mass = 7.67 g
3) Given data:
Mass of tungsten = 15.5 Kg (15.5 kg × 1000 g/ 1kg = 15500 g)
Number of atoms = ?
Solution:
Number of moles of tungsten:
Number of moles = mass/molar mass
Number of moles = 15500 g / 183.84 g/mol
Number of moles = 84.3 mol
1 mole contain 6.022 ×10²³ atoms
84.3 mol × 6.022 ×10²³ atoms / 1mol
507.65 ×10²³ atoms
Explanation:
The chemical reaction equation will be as follows.

As 1 mole
reacts with 1 mole of
Hence, moles of
= Molarity × Volume (in mL)
= 0.5 × 38.0 mL
= 0.019 mol
Moles of
= Molarity × Volume (in mL)
= 0.6 × 42.0 mL
= 0.0252 mol
As moles of CuS is less than the moles of
. This means that CuS is the limiting reagent.
Thus, maximum moles of CuS formed are 0.019 mol. As molar mass of CuS is 95.6 g/mol.
Therefore, maximum mass of CuS can be formed is 
= 1.8164 g
Thus, we can conclude that maximum mass of CuS formed is 1.8164 g.
Calculate the pressure using the Van der Waals equation and the pressure using the ideal gas equation PV=nRT. Subtract the two pressures to get the difference. then:<span>Calculate how many moles of ammonia you have using the ideal gas equation PV=nRT. Multiply the number of moles by the molar mass of ammonia to get the mass in grams.</span>