Answer:
D 2,2
Explanation:
We can see that there are 2 chlorines on the reactant side so there has to be a 2 on the product side
Now we have Na + Cl2 --> 2NaCl
The problem now is that there are 2 sodiums on the product side so add a 2 to the Na on the reactant side
2Na + Cl2 --> 2NaCl
Now it's balanced!
Answer:
Most divergent plate boundaries are underwater and form submarine mountain ranges called oceanic spreading ridges. While the process of forming these mountain ranges is volcanic, volcanoes and earthquakes along oceanic spreading ridges are not as violent as they are at convergent plate boundaries.
Explanation:
Answer:
All atoms heavier than barium
Explanation:
In the periodic table, elements are divided into blocks. We have the;
s- block elements
p- block elements
d- block elements
f- block elements
However, immediately after Barium, we now encounter elements that have f-orbitals. Barium possesses a fully filled d-orbital. Hence after it, we see elements with 4f and 5f orbitals called the Lanthanides and actinides. The elements following the lanthanide and actinide series possess completely filled f-orbitals as inner orbitals.
Hence elements heavier than barium all possess f-orbitals.
<u>Answer:</u> The value of
for the given reaction is 1.435
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of
= 9.2 g
Molar mass of
= 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:

For the given chemical equation:

<u>Initial:</u> 0.20
<u>At eqllm:</u> 0.20-x 2x
We are given:
Equilibrium concentration of
= 0.057
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![[NO_2]_{eq}=2x=(2\times 0.143)=0.286M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.143%29%3D0.286M)
![[N_2O_4]_{eq}=0.057M](https://tex.z-dn.net/?f=%5BN_2O_4%5D_%7Beq%7D%3D0.057M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 1.435
The answer to this question is False