Answer:
If the temperature was increased to 404 K, its volume would be 3.68 L.
Explanation:
Charles' Law gives a relationship between the volume and the temperature of the gas at constant temperature. This law states that the volume of a given amount of gas held at constant pressure is directly proportional to the temperature.


Let

Let
is new volume. Using above formula we get :

If the temperature was increased to 404 K, its volume would be 3.68 L.
Answer:
1.169s
Explanation:
k = 0.851 M-1s-1
The unit of the rate constant, k tells us this is a second order reaction.
From the question;
Initial Concentration [A]o = 2.01M
Final Concentration [A] = One third of 2.10 = (1/3) * 2.10 = 0.67M
Time = ?
The integrated rate law for second order reactions is given as;
1 / [A] = (1 / [A]o) + kt
Making t subject of interest, we have;
kt = (1 / [A] ) - (1 / [A]o )
t = (1 / [A] ) - (1 / [A]o ) / k
Inserting the values;
t = [ (1 / 0.67 ) - (1 / 2.10) ] / 0.851
t = ( 1.4925 - 0.4975 ) / 0.851
t = 0.995 / 0.851
t = 1.169s
[A] = 0.13073 M ≈ 0.13 M ( 2 s.f)
Answer:
Light of wavelength 200 nm will have lowest frequency in while traveling through diamond.
Explanation:
Speed of the light in vacuum = c
Relation between speed of light , wavelength (λ) and frequency (ν);

Speed of light in a medium = c' = c/n
...[1]
Where : n = refractive index of a medium
So, the medium with greater value of refractive index lower the speed of light to greater extent.
From [1] , we can see that frequency of light is inversely proportional to the refractive index of the medium :

This means that higher the value of refractive index lower will be the value of frequency of light in that medium or vice-versa.
According to question, light of wavelength 200 nm will have lowest frequency in while traveling through diamond because refractive index of diamond out of the given mediums is greatest.
Increasing order of refractive indices:

Decreasing order of frequency of light 210 nm in these medium :
