Explanation:
here's the answer to your question
Answer: The density of the material is 2.66 g/mL and it is likely this is made of Aluminum
Explanation:
The first step to know the material of the chunk of metal is to calculate its density. The general formula for density is P (density) =
. Moreover, in this case, it is known the mass is 37.28 g, but the volume is not directly provided. However, we know the water in the graduated cylinder had a volume of 20.0 mL and this increased to 34.0 mL when the chunk of metal is added, this means the volume of the metal is 14 mL (34.0 mL - 20.0 mL = 14 mL). Now let's calculate the density:

This means the density of this metal is 2.66 g/mL, which can be rounded as 2. 7 g/mL, and according to the chart, this is the density of aluminum. Therefore, this material of this chunk is aluminum.
Answer & explanation:
Canned fruits and vegetables generally have a high acidity and salinity content, in order to prevent the product from spoiling, in addition to enhancing its flavor.
The cream-based sauce started to curdle due to the acidity present in the canned tomatoes.
By lowering the pH of dairy products, a protein in them called casein begins to clot. It is this clotting of the casein that causes the cream-based sauce to curdle.
Answer:
i) Use of wrong Indicator in acid base titration.
ii) Addition of chemicals with improper sequence.
iii) Wrong technique used during chemical reaction.
Answer:
Kf
Explanation:
The stability constant Kf of a given complex specie is an equilibrium constant that represents the formation of that particular complex specie in solution. It measures the strength of the interaction between the ligands and metal that form the particular complex specie. The magnitude of Kf shows how easily a complex specie is formed in solution.
Hence if I want to dissolve the bromides or chlorides of silver which are ordinarily insoluble in water by means of complex formation, the magnitude of the stability constant for each particular complex specie is important as it gives information regarding the thermodynamic feasibility of the process.