Because if the cherries are eaten them the seeds/pit will be eaten as well which will be carried by whatever ate it and pooped out and can make more of its kind but it is different with wind and water do you also want that answer?
Answer is: K <span>be for the reaction at 375 K is 326.
</span>Chemical reaction: N₂(g) + 3H₂(g) ⇌ 2NH₃(g); ΔH = -92,22 kJ/mol.
T₁<span><span> = 298 K
</span>T</span>₂<span><span> = 375 K
</span><span>Δ<span>H = -92,22 kJ/mol = -92220 J/mol.
R = 8,314 J/K</span></span></span>·mol.<span>
K</span>₁ = 6,8·10⁵.<span>
K</span>₂ = ?The van’t Hoff equation: ln(K₂/K₁) = -ΔH/R(1/T₂ - 1/T₁).
ln(K₂/6,8·10⁵) = 92220 J/mol / 8,314 J/K·mol (1/375K - 1/298K).
ln(K₂/6,8·10⁵) = 11092,13 · (0,00266 - 0,00335).
ln(K₂/6,8·10⁵) = -7,64.
K₂/680000= 0,00048
K₂ = 326,4.
Answer:
4800
Explanation:
using my Cal ex to solve the question
calculation goes like this
2*300*8=4800
The answer is: when the aim is to show electron distributions in shells
An orbital notation is more appropriate if you want to show how the electrons of an atom are distributed in each subshell. This is because there are some atoms that have special electronic configurations that aren't obvious in just written configurations.