Answer:
Equilibrium concentration of
is 12.5 M
Explanation:
Given reaction: 
Here, ![K_{c}=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}][H_{2}O]}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5BH_%7B2%7DO%5D%7D)
where
represents equilibrium constant in terms of concentration and species inside third bracket represent equilibrium concentrations
Here,
,
and 
So, ![[H_{2}O]=\frac{[C_{2}H_{5}OH]}{[C_{2}H_{4}]\times K_{c}}=\frac{1.69}{0.015\times 9.0}=12.5M](https://tex.z-dn.net/?f=%5BH_%7B2%7DO%5D%3D%5Cfrac%7B%5BC_%7B2%7DH_%7B5%7DOH%5D%7D%7B%5BC_%7B2%7DH_%7B4%7D%5D%5Ctimes%20K_%7Bc%7D%7D%3D%5Cfrac%7B1.69%7D%7B0.015%5Ctimes%209.0%7D%3D12.5M)
Hence equilibrium concentration of
is 12.5 M
A model of the atom as they didnt have microscopes back then they used models to describe
Answer:
There are
grams contained in all the seawater in the world.
Explanation:
At first let is determinate the total mass of seawater (
), measured in grams, in the world by definition of density and considering that mass is distributed uniformly:

Where:
- Density of seawater, measured in grams per liters.
- Volume of seawater, measured in liters.
If
and
, then:


The total mass of sodium chloride is determined by the following ratio:


Given that
and
, the total mass of sodium chloride in all the seawater in the world is:

There are
grams contained in all the seawater in the world.
<span>A molecule of water is divided in this way: H + ends up in stoma O2 goes into atmosphere electrons go to ETC. In this way begins a division with a termination of all the resulting components of this molecule of water.</span>
Answer:
A bonding that occurs between high electronegative atoms such are N, F, O and H atoms, is called a hydrogen bond. Hydrogen bond is a very strong bond. (C)
If hydrogen bonds are not formed between H atoms and N, F, O atom, then the atoms interact through dispersion forces (also known as london dispersion forces). Dispersion forces are weak and they are temporary forces formed by overlapping of orbitals. (B)