Answer:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We are required to find a unit vector in the direction of:
![\left[\begin{array}{c}-8\\7\\2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-8%5C%5C7%5C%5C2%5Cend%7Barray%7D%5Cright%5D)
Unit Vector, 
The Modulus of
=
Therefore, the unit vector of the matrix is given as:
![\left[\begin{array}{c}-\frac{8}{\sqrt{117} } \\\frac{7}{\sqrt{117} }\\\frac{2}{\sqrt{117} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-%5Cfrac%7B8%7D%7B%5Csqrt%7B117%7D%20%7D%20%5C%5C%5Cfrac%7B7%7D%7B%5Csqrt%7B117%7D%20%7D%5C%5C%5Cfrac%7B2%7D%7B%5Csqrt%7B117%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Answer:
x = 10 or x = 2
Step-by-step explanation:
Solve for x:
x^2 - 12 x + 20 = 0
Hint: | Solve the quadratic equation by completing the square.
Subtract 20 from both sides:
x^2 - 12 x = -20
Hint: | Take one half of the coefficient of x and square it, then add it to both sides.
Add 36 to both sides:
x^2 - 12 x + 36 = 16
Hint: | Factor the left hand side.
Write the left hand side as a square:
(x - 6)^2 = 16
Hint: | Eliminate the exponent on the left hand side.
Take the square root of both sides:
x - 6 = 4 or x - 6 = -4
Hint: | Look at the first equation: Solve for x.
Add 6 to both sides:
x = 10 or x - 6 = -4
Hint: | Look at the second equation: Solve for x.
Add 6 to both sides:
Answer: x = 10 or x = 2
Answer:

Step-by-step explanation:
You have the following differential equation:
(1)
In order to find the solution to the equation, you can use the method of the characteristic polynomial.
The characteristic polynomial of the given differential equation is:

The solution of the differential equation is:
(2)
where m1 and m2 are the roots of the characteristic polynomial.
You replace the values obtained for m1 and m2 in the equation (2). Then, the solution to the differential equation is:

Answer:
15
Step-by-step explanation:
.5 * 30 = 15