Answer:
48.37514 kj
Explanation:
Given data:
Mass of water = 163 g
Initial temperature = 29°C
Final temperature = 100°C
Heat added = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 100°C - 29°C
ΔT = 71°C
Q = 163 g × 4.18 j/g.°C × 71°C
Q = 48375.14 j
Joule to Kj conversion:
48375.14 /1000 = 48.37514 kj
Answer:
6
Explanation:
The p orbital needs 2 more electrons.
Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg