Answer:
substances with a higher boiling point are returning back to the flask which allows another substances with the specific context temperature (lower boiling point) to boil over and be purified.
Explanation:
The reason it happens because the lower boiling point substance vaporizes and crosses over while the other substance is waiting for its boiling point to reach
Answer: Yes,
is a strong acid.
acid =
, conjugate base =
, base =
, conjugate acid = 
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.
Yes
is a strong acid as it completely dissociates in water to give
ions.

For the given chemical equation:

Here,
is loosing a proton, thus it is considered as an acid and after losing a proton, it forms
which is a conjugate base.
And,
is gaining a proton, thus it is considered as a base and after gaining a proton, it forms
which is a conjugate acid.
Thus acid =
conjugate base =
base = 
conjugate acid =
.
Answer:
a)there would be no reaction
Explanation:
The activity series of metals has many functions. The one applicable to this problem is that it can be used to determine whether a reaction will occur or not. Also, based on the positions of metals in the series, we can know how reactive a metal is compared to another.
In a single displacement reaction, a metal replaces another metal based on their position on the activity series. Metals that are higher in the series are generally more reactive than others below them and so will displace them.
Would aluminum replace magnesium to form a new compound or would there be no reaction?
Magnesium is higher than aluminum in the activity series. Therefore it is more reactive than aluminum. No reaction will occur.
I think it is feeling warm air while standing in front of the blower from a heating system.
Hope this helps! :)