The value of c is 81/64 for the expression a perfect square trinomial.
<h3>
What is an Expression?</h3>
An expression can be defined as a mathematical statement that consists of variables, constants and mathematical operators simultaneously.
It is given that an expression
x² +9/4x +c is a perfect square polynomial
c =?
(a+b)² = a² +2ab+b²
2ab = 9/4
b = 9/8
c = b² = 81/64
Therefore the value of c is 81/64 for the expression a perfect square trinomial.
To know more about Expression
brainly.com/question/14083225
#SPJ1
Answer: a. ![f(x)=5054(1.02)^x](https://tex.z-dn.net/?f=f%28x%29%3D5054%281.02%29%5Ex)
b. The population in 2032 will be 8292.
Step-by-step explanation:
Exponential growth equation:
, where a = initial value , r = growth rate, x = time period
Given: a = 5054 , r= 0.02
a. Required exponential growth function: ![f(x)=5054(1+0.02)^x](https://tex.z-dn.net/?f=f%28x%29%3D5054%281%2B0.02%29%5Ex)
![f(x)=5054(1.02)^x](https://tex.z-dn.net/?f=f%28x%29%3D5054%281.02%29%5Ex)
b. For 2032, x= 25
![f(25)=5054(1.02)^{25}](https://tex.z-dn.net/?f=f%2825%29%3D5054%281.02%29%5E%7B25%7D)
![\approx8291.62\approx8292](https://tex.z-dn.net/?f=%5Capprox8291.62%5Capprox8292)
The population in 2032 will be 8292.
I think this is right. Hope it helps
Answer:
4-9=-5
Step-by-step explanation:
do the work you get that
Answer:
a) ![E(Y) = \sum_{i=1}^n Y_i P(Y_i)](https://tex.z-dn.net/?f=%20E%28Y%29%20%3D%20%5Csum_%7Bi%3D1%7D%5En%20Y_i%20P%28Y_i%29)
And replacing we got:
![E(Y) =0*0.60 +1*0.25 +2*0.1 +3*0.05 = 0.60](https://tex.z-dn.net/?f=%20E%28Y%29%20%3D0%2A0.60%20%2B1%2A0.25%20%2B2%2A0.1%20%2B3%2A0.05%20%3D%200.60)
b) ![E(Y^2) =0^2*0.60 +1^2*0.25 +2^2*0.1 +3^2*0.05 = 1.1](https://tex.z-dn.net/?f=%20E%28Y%5E2%29%20%3D0%5E2%2A0.60%20%2B1%5E2%2A0.25%20%2B2%5E2%2A0.1%20%2B3%5E2%2A0.05%20%3D%201.1)
And then the expected value would be:
![E(100Y^2) = 100*1.1= 110](https://tex.z-dn.net/?f=%20E%28100Y%5E2%29%20%3D%20100%2A1.1%3D%20110)
Step-by-step explanation:
We assume the following distribution given:
Y 0 1 2 3
P(Y) 0.60 0.25 0.10 0.05
Part a
We can find the expected value with this formula:
![E(Y) = \sum_{i=1}^n Y_i P(Y_i)](https://tex.z-dn.net/?f=%20E%28Y%29%20%3D%20%5Csum_%7Bi%3D1%7D%5En%20Y_i%20P%28Y_i%29)
And replacing we got:
![E(Y) =0*0.60 +1*0.25 +2*0.1 +3*0.05 = 0.60](https://tex.z-dn.net/?f=%20E%28Y%29%20%3D0%2A0.60%20%2B1%2A0.25%20%2B2%2A0.1%20%2B3%2A0.05%20%3D%200.60)
Part b
If we want to find the expected value of
we need to find the expected value of Y^2 and we have:
![E(Y^2) = \sum_{i=1}^n Y^2_i P(Y_i)](https://tex.z-dn.net/?f=%3C%2Fstrong%3E%20E%28Y%5E2%29%20%3D%20%5Csum_%7Bi%3D1%7D%5En%20Y%5E2_i%20P%28Y_i%29)
And replacing we got:
![E(Y^2) =0^2*0.60 +1^2*0.25 +2^2*0.1 +3^2*0.05 = 1.1](https://tex.z-dn.net/?f=%20E%28Y%5E2%29%20%3D0%5E2%2A0.60%20%2B1%5E2%2A0.25%20%2B2%5E2%2A0.1%20%2B3%5E2%2A0.05%20%3D%201.1)
And then the expected value would be:
![E(100Y^2) = 100*1.1= 110](https://tex.z-dn.net/?f=%20E%28100Y%5E2%29%20%3D%20100%2A1.1%3D%20110)