1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
3 years ago
12

PLEASE ANSWER ASAP FOR BRAINLEST!!!!!!!!!!!!!!!

Mathematics
1 answer:
IrinaK [193]3 years ago
7 0

Step-by-step explanation:

i think u had done something wrong in equation

You might be interested in
How many dots are in the 4th step?
Mkey [24]

Answer:

32

Step-by-step explanation:

if you look at the diagram the dot goes up 1 each. It also makes another row which makes 4 rows total. Since 3 contains 7 dots and 3 rows we would do 8 in 4 rows. 8 x 4 is 32.

Hope this helped!

7 0
3 years ago
Read 2 more answers
Please Help ASAP!! NEED DONE QUICKLY!!
Kipish [7]

Answer:

z=t and y = 4y -- 6 for any t?

5 0
3 years ago
Divides a line segment at the middle
bazaltina [42]

Answer:  Midpoint

<u>Step-by-step explanation:</u>

Midpoint is the point that is equal distance from the endpoints.

8 0
3 years ago
Nathan is going to invest in an account paying an interest rate of 1.9% compounded continuously. How much would Nathan need to i
Sliva [168]

Answer:

223 (rounded to closest one) actual answer would be 222.91479275

Step-by-step explanation:

use formula A=Pe^nt

$280 = Pe^0.019(12)

$280 = Pe^0.228, then evaluate the solution by isolating the variable and dividing each side by the factors which don't contain the variable.

P = 222.91479275

3 0
3 years ago
For integers a, b, and c, consider the linear Diophantine equation ax C by D c: Suppose integers x0 and y0 satisfy the equation;
Dmitrij [34]

Answer:

a.

x = x_1+r(\frac{b}{gcd(a, b)} )\\y=y_1-r(\frac{a}{gcd(a, b)} )

b. x = -8 and y = 4

Step-by-step explanation:

This question is incomplete. I will type the complete question below before giving my solution.

For integers a, b, c, consider the linear Diophantine equation

ax+by=c

Suppose integers x0 and yo satisfy the equation; that is,

ax_0+by_0 = c

what other values

x = x_0+h and y=y_0+k

also satisfy ax + by = c? Formulate a conjecture that answers this question.

Devise some numerical examples to ground your exploration. For example, 6(-3) + 15*2 = 12.

Can you find other integers x and y such that 6x + 15y = 12?

How many other pairs of integers x and y can you find ?

Can you find infinitely many other solutions?

From the Extended Euclidean Algorithm, given any integers a and b, integers s and t can be found such that

as+bt=gcd(a,b)

the numbers s and t are not unique, but you only need one pair. Once s and t are found, since we are assuming that gcd(a,b) divides c, there exists an integer k such that gcd(a,b)k = c.

Multiplying as + bt = gcd(a,b) through by k you get

a(sk) + b(tk) = gcd(a,b)k = c

So this gives one solution, with x = sk and y = tk.

Now assuming that ax1 + by1 = c is a solution, and ax + by = c is some other solution. Taking the difference between the two, we get

a(x_1-x) + b(y_1-y)=0

Therefore,

a(x_1-x) = b(y-y_1)

This means that a divides b(y−y1), and therefore a/gcd(a,b) divides y−y1. Hence,

y = y_1+r(\frac{a}{gcd(a, b)})  for some integer r. Substituting into the equation

a(x_1-x)=rb(\frac{a}{gcd(a, b)} )\\gcd(a, b)*a(x_1-x)=rba

or

x = x_1-r(\frac{b}{gcd(a, b)} )

Thus if ax1 + by1 = c is any solution, then all solutions are of the form

x = x_1+r(\frac{b}{gcd(a, b)} )\\y=y_1-r(\frac{a}{gcd(a, b)} )

In order to find all integer solutions to 6x + 15y = 12

we first use the Euclidean algorithm to find gcd(15,6); the parenthetical equation is how we will use this equality after we complete the computation.

15 = 6*2+3\\6=3*2+0

Therefore gcd(6,15) = 3. Since 3|12, the equation has integral solutions.

We then find a way of representing 3 as a linear combination of 6 and 15, using the Euclidean algorithm computation and the equalities, we have,

3 = 15-6*2

Because 4 multiplies 3 to give 12, we multiply by 4

12 = 15*4-6*8

So one solution is

x=-8 & y = 4

All other solutions will have the form

x=-8+\frac{15r}{3} = -8+5r\\y=4-\frac{6r}{3} =4-2r

where r ∈ Ζ

Hence by putting r values, we get many (x, y)

3 0
3 years ago
Other questions:
  • Nicks poster has an Area of 2 1/2 feet. If the width is 1 1/4 feet what is the length?
    11·1 answer
  • Marin writes the functions m(x) = StartFraction 3 x Over x + 7 EndFraction and n(x) = StartFraction 7 x Over 3 minus x EndFracti
    15·2 answers
  • Diego’s family car holds 14 gallons of fuel. Each day the car uses 0.6 gallons of fuel. A warning light comes on when the remain
    14·1 answer
  • Find the linear equations written in standard form. Select all that apply. A. x+y=-1 B. -3x = y C. x + 4y = 0 D. y = 5x - 2 E. x
    5·1 answer
  • What is 164.50 rounded.
    11·1 answer
  • F(x) = 4x + 3. f(5) = 23. Which number is the input?
    14·1 answer
  • Increase £30 by 2/5?
    14·1 answer
  • Find the common difference of the arithmetic sequence 4, 10, 16,...​
    14·2 answers
  • Question 5
    10·1 answer
  • A box contains 100 colored chips; some are pink and some are blue. Milton chooses a chip at random, records the color, and place
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!