From the given table, the annual premium rate as a percentage of value insured a person at age 35 has to pay is 0.14%.
- The amount more annually a $115,000 10-year term insurance at age 35 cost Bernard than someone of the same age without health issues is option d. <u>$24</u>
Reasons:
The data in the table are presented as follows;
![\begin{tabular}{|c|c|c|}Age&Annual Insurance Premiums (per \$1,000 of face value)&\\&10-Year Term &\\&Male&Female\\35&1.40&1.36\\40&1.64&1.59\\45&2.07&2.01\end{array}\right]](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%7B%7Cc%7Cc%7Cc%7C%7DAge%26Annual%20Insurance%20Premiums%20%28per%20%5C%241%2C000%20of%20face%20value%29%26%5C%5C%2610-Year%20Term%20%26%5C%5C%26Male%26Female%5C%5C35%261.40%261.36%5C%5C40%261.64%261.59%5C%5C45%262.07%262.01%5Cend%7Barray%7D%5Cright%5D)
From the above table, we have that the amount a 35 year old without health issues will pay per $1,000 is $1.40
Therefore, the amount to be paid for $115,000 is 115 × $1.4 = $161
The amount Bernard pays = 15% more = 1.15 × $161 = $185.15
Therefore;
The amount more Bernard has to pay = $185.15 - $161 = $24.15 ≈ <u>$24</u>
Learn more about insurance premiums here:
brainly.com/question/3053945
Part A: The first thing you should do is to graph both lines. Notice that one is of positive slope and another of negative slope.
The solution of the inequation system is given by the shaded region. That is, all the points that are in the shaded region satisfy the system of inequations.
Part B: the point (-2, -2) is NOT included in the solution area (it is not in the shaded region.
Mathematically it is demonstrated by substituting inequalities and seeing that they are not satisfied
inequality 1 -2 <4 (-2) - 2
-2 <-10 (false)
inequality two -2> = - (5/2) (- 2) - 2
-2> = 3 (false).
Answer:
Oh dear, Prodigy?
Step-by-step explanation:
*basically ea math game*
uh let's see...
1.3333333333333 mg