Answer:
Water moves from the ground or oceans into the atmosphere through a process called evaporation. It's a process that happens on a molecular level when the molecules of water are really energized and rise into the air. Now you've got water in the air and water on land. Organisms all over the Earth need water to survive.
Explanation:
Answer:
K = 0.2
Explanation:
Based on the chemical dissociation of N₂O₄:
N₂O₄ ⇄ 2NO₂
The equilibrium constant, K, of the reaction is:
K = [NO₂]² / [N₂O₄]
Now, if 20% of N₂O₄ is dissociated, 80% remains as N₂O₄ = 0.8mol/L = 0.8M
as 20% is dissociated, 0.2moles of N₂O₄ were dissociated and 0.2*2 = 0.4mol/L of NO₂ are produced.
Replacing in K:
K = [0.4M]² / [0.8M]
<h3>K = 0.2</h3>
Answer:
2PbSO4 → 2PbSO3 + O2
Explanation:
in original equation we notice that we have one extra oxygen, which we cannot form a O2 with, so by multiplying everything else by 2, we get 2 extra oxygen
Answer:
All the option are correct
Explanation:
The ocean currents have been associated with past climatic shifts during critical periods (for example, the ice ages), where modifications in water circulation might have caused important climatic changes.
From a biological point of view, the ocean currents may be associated not only with the climate but also biogeochemical cycles through modifications in the distribution of heat and freshwater. Thus, the changes in ocean circulation may produce biogeographical shifts by affecting the local climate. The importance of ocean currents in affecting biodiversity is also represented by the equilibrium of coral reef ecosystems, where this equilibrium is broken up by factors such as transport of pollutants, temperature conditions, etc., which are known to alter thermosensitive coral species.