At the half equivalence point [HA] = [A-] and pH = pKa
<span>if Ka is 5.2e-5 then pKa = pH = 4.28</span>
Answer:
See explanation
Explanation:
The reaction that we are considering here is quite a knotty reaction. It is difficult to decide if the mechanism is actually E1 or E2 since both are equally probable based on the mass of scientific evidence regarding this reaction. However, we can easily assume that the methylenecyclohexane was formed by an E1 mechanism.
Looking at the products, one could convincingly assert that the reaction leading to the formation of the two main products proceeds via an E1 mechanism with the formation of a carbocation intermediate as has been shown in mechanism attached to this answer. Possible rearrangement of the carbocation yields the 3-methylcyclohexene product.
A carbon-12 atom has 6 protons (6P) and 6 neutrons (6N). But some types of carbon have more than six neutrons. We call forms of elements that have a different number of neutrons, isotopes. For example, carbon-14 is a radioactive isotope of carbon that has six protons and eight neutrons in its nucleus.
Hope that helps
The answer is 64.907 amu.
The atomic mass of an element is the average of the atomic masses of its isotopes. The relative abundance of isotopes must be taken into consideration, therefore:
atomic mass of copper = atomic mass of isotope 1 * abundance 1 + atomic mass of isotope 2 * abundance 2
We know:
atomic mass of copper = 63.546 amu
The atomic mass of isotope 1 is: 62.939 amu
The abundance of isotope 1 is: 69.17% = 0.6917
The atomic mass of isotope 1 is: x
The abundance of isotope 2: 100% - 69.17% = 30.83% = 0.3083
Thus:
63.546 amu = 62.939 amu * 0.6917 + x * 0.3083
63.546 <span>amu = 43.535 amu + 0.3083x
</span>⇒ 63.546 amu - 43.535 amu = 0.3083x
⇒ 20.011 amu = 0.3083x
⇒ x = 20.011 amu ÷ 0.3083 = 64.907 amu
Isotopes of same element has different number of neutrons with different masses and having same number of protons and electrons.
Radioactive isotopes are those isotopes which are radioactive in nature. The unstable nucleus results in the radioactivity process and this process will go on until the stable isotope (element) forms.
Thus, the nucleus of unstable isotopes of an element will decay leading to emission of radiation.