The activity coefficient of h is 0.05
The ph of the solution is 2.08
To find the activity coefficient, apply the concept of ionic equilibrium
h( activity coefficient)= 1/2CZ²
C is the concentration of species
Z is the charge on individual species
<em>h= 1/2( 0.01 x1²+ 0.04x (-1)²+0.01 x1²+0.04x (-1)²)</em>
<em>h= 0.05 </em>
For the pH of the solution, apply the formula
<em>pH= -log( H⁺x0.83)</em>
<em>pH = - log(0.01x0.83)</em>
<em>= 2.08</em>
To learn more about the pH of the solution, visit brainly.com/question/26767292
#SPJ4
Answer:
19. Option B. ⁰₋₁B
20. Option D. ²¹⁰₈₄Po
Explanation:
19. ²²⁸₈₈Ra —> ²²⁸₈₉Ac + ʸₓZ
Thus, we can determine ʸₓZ as follow:
228 = 228 + y
Collect like terms
228 – 228 = y
y = 0
88 = 89 + x
Collect like terms
88 – 89 = x
x = –1
Thus,
ʸ ₓZ => ⁰₋₁Z => ⁰₋₁B
²²⁸₈₈Ra —> ²²⁸₈₉Ac + ʸₓZ
²²⁸₈₈Ra —> ²²⁸₈₉Ac + ⁰₋₁B
20. ᵘᵥX —> ²⁰⁶₈₂Pb + ⁴₂He
Thus, we can determine ᵘᵥX as follow:
u = 206 + 4
u = 210
v = 82 + 2
v = 84
Thus,
ᵘᵥX => ²¹⁰₈₄X => ²¹⁰₈₄Po
ᵘᵥX —> ²⁰⁶₈₂Pb + ⁴₂He
²¹⁰₈₄Po —> ²⁰⁶₈₂Pb + ⁴₂He
Answer:
The collision theory is defined as the rate of a reaction is proportional to the rate of reactant collisions.
Explanation:
The reacting species should collide with orientation that allows contract between the atoms that will become bonds together in the product.
The collision occurs with adequate energy to permit mutual penetration of the reacting species. The two physical factors based on the orientation and energy of collision, the following reaction with carbon monoxide with oxygen is considered.
2CO(g) + O2(g) → 2CO2 (g)
After collision between the carbon monoxide and oxygen the reaction is
CO(g) + O2(g) → CO2 (g) + O(g)
Based on the theories of chemical reaction the molecules collide with sufficient amount of energy an activated complex is formed.
Answer:
Hindi ko po ma gets sinasabi nyu pwedeng pakiayus
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.