The slope is given as m = 7m=7 and the yy-intercept as b = - \,4b=−4. Substituting into the slope-intercept formula y = mx + by=mx+b, we have
since m=7 and b=-4, we can substitute that into the slope-intercept form of a line to get y=mx+b → y=7x-4
The slope is positive thus the line is increasing or rising from left to right, but passing through the yy-axis at point \left( {0, - \,4} \right)(0,−4).
Step-by-step explanation:
Hopefully these are correct lol, make sure to check it with a classmate. but i tried :)
Given : A florist currently makes a profit of $20 on each of her celebration bouquets and sells an average of 30 bouquets every week . and graph
To Find : Maximum profit , breakeven point , profit interval
Solution:
The maximum profit the florist will earn from selling celebration bouquets is $ 675
peak of y from Graph
The florist will break-even after Selling 20 one-dollar decreases.
at breakeven
Break even is the point where the profit p(x) becomes 0
The interval of the number of one-dollar decreases for which the florist makes a profit from celebration bouquets is (0 ,20).
after 20 , P(x) is - ve
Step-by-step explanation:
<h3>Appropriate Question :-</h3>
Find the limit
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)

Given expression is
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
On substituting directly x = 1, we get,


which is indeterminant form.
Consider again,
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
can be rewritten as
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%203x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%202x%20-%20x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20x%28x%20-%202%29%20-%201%28x%20-%202%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%7B%28x%20-%202%29%7D%5E%7B2%7D%20-%201%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%202%20-%201%29%28x%20-%202%20%2B%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%28x%20-%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%7D%7Bx%28x%20-%202%29%7D%5Cright%5D)



Hence,
![\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}](https://tex.z-dn.net/?f=%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%20%5Crm%7B%20%5C%3A%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D%20%3D%202%20%5C%3A%20%7D%7D)
