Answer:
where is option
you only say choose that following select apply
Explanation:
please give option
Had to look for the options and here is my answer.
Given the situation that a poison is consumed and this prevented the acetylcholine release, the one that would most likely occur at a myoneural junction is that "sodium and potassium gates on the motor end plate will not open". Hope this helps.
<h2>Answer:</h2>
The correct answer is option D. Which is "Over time, the lawn has naturally become disorderly".
<h3>Explanation:</h3>
- Entropy, the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
- It is also a measure of the molecular disorder, or randomness, of a system.
- According to above definitions of entropy option D is correct.
- <u>So entropy of system is randomness/disorder that is increasing with time in case of lawn.</u>
The direction of the force of static friction is along the plane of contact, and is opposite to the direction in which there would be relative motion if there was no friction (for example, if one of the surfaces suddenly turned to ice). Hope this helped!
Answer:
Explanation:
![A=\left[\begin{array}{ccc}3&-9&-3\\-1&2&0\\-2&3&-1\end{array}\right] \\\\R_2\rightarrow 3R_2+R_1,R_3\rightarrow 3R_3+2R_1\\\\=\left[\begin{array}{ccc}3&-9&-3\\0&-3&-3\\0&-9&-9\end{array}\right] \\\\R_3\rightarrow 3R_3-9R_2\\\\=\left[\begin{array}{ccc}3&-9&-3\\0&-3&-3\\0&0&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-9%26-3%5C%5C-1%262%260%5C%5C-2%263%26-1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CR_2%5Crightarrow%203R_2%2BR_1%2CR_3%5Crightarrow%203R_3%2B2R_1%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-9%26-3%5C%5C0%26-3%26-3%5C%5C0%26-9%26-9%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CR_3%5Crightarrow%203R_3-9R_2%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-9%26-3%5C%5C0%26-3%26-3%5C%5C0%260%260%5Cend%7Barray%7D%5Cright%5D)
This is the row echelon form of A. This means that only two of the vectors in our set are linearly independent. In other words, the first two vectors alone will span the same subspace of
as all three vectors.
Therefore, the linearly independent spanning set for the subspace is
![\left[\begin{array}{ccc}3\\-1\\-2\end{array}\right] \left[\begin{array}{ccc}-9\\2\\3\end{array}\right] \left[\begin{array}{ccc}3\\0\\-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C-1%5C%5C-2%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-9%5C%5C2%5C%5C3%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C0%5C%5C-1%5Cend%7Barray%7D%5Cright%5D)