Answer:
A. I and V
Explanation:
According to Le Chatelier's Principle, increasing the product side will cause the equilibrium to shift back towards the reactant side, so I is true. By the same principle, II is false.
For gases, decreasing the pressure will cause the equilibrium to shift towards the side with higher number of moles. So V is true.
The reaction is endothermic, so increasing the temperature will shift the equilibrium to the products, so IV is false. And adding a catalyst has no effect on the equilibrium, so III is false.
1. neutral particles (neutrons) are in the nucleus
2. nucleus is in the nucleus
3. electron cloud is in the electron cloud
4. positively charged particles (protons) are in the nucleus
5. negatively charged particles (electrons) are in the electron cloud
<span>the heated filament will react with the oxygen in the air but now with the argon, which is a noble gas and hardly ever reacts.</span>
Answer:
<u>A:cool fluid sinks</u>
<u>B:warm fluid rises</u>
<u>C:convection current</u>
Explanation:
Just took the assessment!!
Answer:
The magnitude of the induced electric field at a point 2.5 cm from the axis of the solenoid is 8.8 x 10⁻⁵ V/m
Explanation:
given information:
radius, r = 2.0 cm
N = 700 turns/m
decreasing rate, dI/dt = 9.0 A/s
the magnitude of the induced electric field at a point 2.5 cm (r = 2.5 cm = 0.025 m) from the axis of the solenoid?
the magnetic field at the center of solenoid
B = μ₀nI
where
B = magnetic field (T)
μ₀ = permeability (1.26× 10⁻⁶ T.m/A)
n = the number turn per unit length (turn/m)
I = current (A)
dB/dt = μ₀n dI/dt (1)
now we calculate the induced electric field by using
E =
= 2E/r (2)
where
E = the induced electric field (V/m)
we substitute the firs and second equation, thus
dB/dt = μ₀n dI/dt
2E/r = μ₀n dI/dt
E = (1/2) r μ₀n dI/dt
= (1/2) (0.025) (1.26× 10⁻⁶) (700) (8)
= 8.8 x 10⁻⁵ V/m