Answer:
buoyant force on the block due to the water= 10 N
Explanation:
We know that
buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.
Given:
A block of metal weighs 40 N in air and 30 N in water.
F_B = 40-30= 10 N
therefore, buoyant force on the block due to the water= 10 N
this can be solve using the formala of free fall
t = sqrt( 2y/ g)
where t is the time of fall
y is the height
g is the acceleration due to gravity
48.4 s = sqrt (2 (1.10e+02 m)/ g)
G = 0.0930 m/s2
The velocity at impact
V = sqrt(2gy)
= sqrt( 2 ( 0.0930 m/s2)( 1.10e+02 m)
V = 4.523 m/s
<span> </span>
Answer:
Δv = 12 m/s, but we are not given the direction, so there are really an infinite number of potential solutions.
Maximum initial speed is 40.6 m/s
Minimum initial speed is 16.6 m/s
Explanation:
Assume this is a NET impulse so we can ignore friction.
An impulse results in a change of momentum
The impulse applied was
p = Ft = 1400(6.0) = 8400 N•s
p = mΔv
Δv = 8400 / 700 = 12 m/s
If the impulse was applied in the direction the car was already moving, the initial velocity was
vi = 28.6 - 12 = 16.6 m/s
if the impulse was applied in the direction opposite of the original velocity, the initial velocity was
vi = 28.6 + 12 = 40.6 m/s
Other angles of Net force would result in various initial velocities.
Answer:
a)3312 x 10⁴ J
b)I = 57.5 A
c)9200 W
Explanation:
Given that
P =4600 W
Time t= 2 h = 2 x 3600 s= 7200 s
We know that
1 W = 1 J/s
a)
Energy stored in the battery = P .t
=4600 x 7200 J
=3312 x 10⁴ J
b)
We know that power P given as
P = V .I
V=Voltage ,I =Current
4600 = 80 x I
I = 57.5 A
c)
The energy supplied = 4600 x 2 = 9200 W
Answer:
C. 10⁻³ rads
Explanation:
Here, we shall use Rayleigh's Criterion to find out the angular resolution of Cat's eye during day light. Rayleigh's Criterion is written as follows:
θ = λ/a
where,
θ = angular resolution of Cat's eye = ?
λ = wavelength = 500 nm = 5 x 10⁻⁷ m
a = slit width of eye = 0.5 mm = 5 x 10⁻⁴ m
Therefore,
θ = (5 x 10⁻⁷ m/5 x 10⁻⁴ m)
Therefore,
θ = 0.001
θ = Sin⁻¹(0.001)
θ = 0.001 rad = 1 x 10⁻³ rad
Hence, the correct answer is:
<u>C. 10⁻³ rads</u>