Answer:
magnitude of the magnetic field 0.692 T
Explanation:
given data
rectangular dimensions = 2.80 cm by 3.20 cm
angle of 30.0°
produce a flux Ф = 3.10 ×
Wb
solution
we take here rectangular side a and b as a = 2.80 cm and b = 3.20 cm
and here angle between magnitude field and area will be ∅ = 90 - 30
∅ = 60°
and flux is express as
flux Ф =
.................1
and Ф = BA cos∅ ............2
so B =
and we know
A = ab
so
B =
..............3
put here value
B =
solve we get
B = 0.692 T
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg
We are given information:
λ

Formula that connects wavelength and frequency is:
Answer:
To strike or crash into with resounding impact. To collide or strike with great force. Used to indicate the sound of a forceful blow or collision.
Answer:
Zero Kelvin
Explanation:
The average kinetic energy of the particles in a gas is related to the absolute temperature of the gas by (for an ideal monoatomic gas):

where
k is the Boltzmann constant
T is the absolute temperature
The average kinetic energy is the energy possessed by the particles due to their motion; we see that this energy becomes zero when T = 0, which means when the substance reaches a temperature of zero Kelvin. Therefore, this means that at this temperature all the particles stop moving.