Answer:
T = 98 N
Explanation:
The gravity of the earth is known to be 9.8 m/s²
Data:
- m = 10 kg
- g = 9.8 m/s²
- T = ?
Use formula:
Replace and solve:
The tension in the rope is <u>98 Newtons.</u>
Greetings.
Answer:
The minimum angular velocity of the platform what whould the block slides away is w= 2.26 rad/s.
Explanation:
m= 0.265 kg
r= 2.4 m
μ= 0.257
g= 9.8 m/s²
W= m * g
W= 2.597 N
Fr= μ * W
Fr= 0.66 N
∑F = m * ac
W+Fr = m * ac
(W+ Fr) / m = ac
ac= 12.29 m/s²
ac= w² * r
√(ac/r)= w
w= 2.26 rad/s
Answer:
5N
Explanation:
Given parameters:
Original length = 22cm
Spring constant, K = 50N/m
New length = 32cm
Unknown
Force applied = ?
Solution:
The force applied on a spring can be derived using the expression below;
Force = KE
k is the spring constant
E is the extension
extension = new length - original length
extension = 32cm - 22cm = 10cm
convert the extension from cm to m;
100cm = 1m;
10cm will give 0.1m
So;
Force = 50N/m x 0.1m = 5N
The specific gravity is how the density of the object compares to the density of water. Water's density is 1gram per milliliter. We just need to figure out the density of the object.
The object is .8 kg and it displaces 500mL of water, so the density is the mass divided by the volume. Since the density of water is given in grams, we have to convert the objects mass from kg to g and then we can get the density.
.8kg * 1000g/kg = 800 grams
So
800g/500ml = 1.6grams/mL this is the density.
So divide the density of your object by the density of water, which is 1g/mL, you get 1.6 as the specific gravity. This means the object is 1.6 times more dense than water.
Answer:
The group one element are called alkali because when they dissolved in water they form alkaline solutions