Answer:
c is the correct option
Step-by-step explanation:
from,
f'(x) = h >0 <u>f</u><u>(</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u>
h
f(x) = - √2x
f(x + h) = - √(2x + h)
f'(x) = h>0 <u>-</u><u>√(2x + h) - √2x</u>
h
rationalize the denominator
= h>0 <u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>+</u><u> </u><u>√</u><u>2</u><u>x</u><u> </u><u> </u><u>(</u><u>-</u><u>√</u><u>(</u><u>2</u><u>x</u><u> </u><u>+</u><u> </u><u>h</u><u>)</u><u> </u><u>-</u><u> </u><u>√</u><u>2</u><u>x</u><u>)</u>
h (-√(2x + h) - √2x)
= h>0 <u>4</u><u>x</u><u> </u><u>+</u><u> </u><u>2</u><u>h</u><u> </u><u>-</u><u> </u><u>4</u><u>x</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x + h) -√2x)
= h>0 <u>2</u><u>h</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
h(-√(2x+h) - √2x)
= h>0 <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
-√(2x+h) - √2x
Answer:
Around 25 pages / 1.5 minute(s)
Step-by-step explanation:
18 / 12 = 1.5 minutes per paper.
So, 18 + 18 = 36 + 1 = 37 minutes
12 + 12 = 24 + 1 = 25
37 / 25 = 1.5
Answer: Here I simplified it and I think its right.
Step-by-step explanation: