C is the answer hope this helps.
Answer:
25m
Step-by-step explanation:
Step-by-step explanation:
<h2>
<em><u>You can solve this using the binomial probability formula.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows:</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) </u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008</u></em></h2><h2>
<em><u>You can solve this using the binomial probability formula.The fact that "obtaining at least two 6s" requires you to include cases where you would get three and four 6s as well.Then, we can set the equation as follows: P(X≥x) = ∑(k=x to n) C(n k) p^k q^(n-k) n=4, x=2, k=2when x=2 (4 2)(1/6)^2(5/6)^4-2 = 0.1157when x=3 (4 3)(1/6)^3(5/6)^4-3 = 0.0154when x=4 (4 4)(1/6)^4(5/6)^4-4 = 0.0008Add them up, and you should get 0.1319 or 13.2% (rounded to the nearest tenth)</u></em></h2>
Answer:
Step-by-step explanation:
10) The opposite sides of a parallelogram are equal. It means that
a + 15 = 3a + 11
3a - a = 15 - 11
2a = 4
a = 4/2 = 2
Also,
3b + 5 = b + 11
3b - b = 11 - 5
2b = 4
b = 4/2 = 2
11) The opposite angles of a parallelogram are congruent and the adjacent angles are supplementary. This means that
2x + 11 + x - 5 = 180
3x + 6 = 180
3x = 180 - 6 = 174
x = 174/3 = 58
Therefore,
2x + 11 = 2×58 + 11 = 127 degrees
The opposite angles of a parallelogram are congruent, therefore,
2y = 127
y = 127/2 = 63.5
12) The diagonals of a parallelogram bisect each other. This means that each diagonal is divided equally at the midpoint. Therefore
3y - 5 = y + 5
3y - y = 5 + 5
2y = 10
y = 10/2 = 5
Also,
z + 9 = 2z + 7
2z - z = 9 - 7
z = 2
Answer:
Keisha paid $7.0805
Step-by-step explanation:
First of all, you already know that 1 pound equals $5.95. Secondly, you have to solve 5.95 divided by 10, which is 0.595. However, the question is asking for 0.2 pounds! Therefore, 0.595 * 2 = 1.19.
But we're not done yet! We still have to find the amount of money in all. 5.95 * 1.19 = 7.0805 The sum of money in all is $7.0805
Hope this helps!