Answer:
a1= 1 q= −sinx , dla |q| <1 , ta suma jest zbieżna
a1 1
S=
=
1 −q 1+sinx
w mianowniku podobnie: a1=1 , q= sinx , dla | sinx| <1
1
S=
1 −sinx
i mamy równanie:
1
1+sinx
= tg2x
1
1− sinx
Step-by-step explanation:
Answer:
(2, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y = 2x
x = -y + 6
<u>Step 2: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: y = 2(-y + 6)
- Distribute 2: y = -2y + 12
- Isolate <em>y</em> terms: 3y = 12
- Isolate <em>y</em>: y = 4
<u>Step 3: Solve for </u><em><u>x</u></em>
- Define equation: x = -y + 6
- Substitute in <em>y</em>: x = -4 + 6
- Add: x = 2
Answer:
Step-by-step explanation:
D
It has 0 solution there are no meeting points of the two given lines.