Explanation:
Wobble Hypothesis given by Francis Harry Compton Crick states that 3rd base of mRNA codon can base pair with 1st base of a tRNA anticodon undergoing non-Watson-Crick.
The first 2 bases of the mRNA codon form Hydrogen bonds with the corresponding bases on tRNA anticodon in Watson-Crick manner. Through this, they only form the base pairs with the complimentary bases. However, formation of the Hydrogen bonds between 3rd base on codon and 1st base on anticodon can occur potentially in non-Watson-Crick manner.
<u>Thus, the Wobble Hypothesis explains that why the multiple codons can code for single amino acid.</u>
A food chain contains a producer and 3 consumers. Primary Consumers (East producers) the arrows in a food chain show the flow of energy, from the sun or hydrothermal vent your a top predator.
Explanation:
The reaction equation will be as follows.

Calculate the amount of
dissolved as follows.

It is given that
= 0.032 M/atm and
=
atm.
Hence,
will be calculated as follows.
=
= 
= 
or, = 
It is given that 
As, ![K_{a} = \frac{[H^{+}]^{2}}{[CO_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%7D%7B%5BCO_%7B2%7D%5D%7D)
= 
= 
Since, we know that pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, pH = 
= 5.7
Therefore, we can conclude that pH of water in equilibrium with the atmosphere is 5.7.
Answer:
K, the rate constant = 9.73 × 10^(-1)/s
Explanation:
r = K × [A]^x × [B]^y
r = Rate = 1.07 × 10^(-1)/s
K = Rate constant
A and B = Concentration in mol/dm^-3
A = 0.44M
B = 0.11M
x = Order of reaction with respect to A = 0
y = Order of reaction with respect to B = 1
Solving, we get
r/([A]^x × [B]^y) = K
K = 1.07 × 10^(-1)/s/(0.44^0 × 0.11^1)= 0.9727
K = 0.9727
Answer:
the answer should be six months