Answer:
From Top to Bottom:
- Democritus coming up with the concept of an atom
- Dalton discovering that atoms are the smallest part of an element
- Rutherford discovering the nucleus of an atom
- Thomson discovering electrons
- Bohr modeling electrons orbiting the nucleus
- Schrodinger modeling electrons in the electron cloud
Explanation:
The best way to think about this is from the inside out. Democrats (who lived long before any of the other scientists mentioned) was the one who thought of the idea of the atom. - Therefore, this must be first because all other choices are elaborations on the idea that atoms exist. Next must be Dalton. Dalton saw atoms as "cannonballs" if you will; a solid mass. So then after that, Rutherford and his gold foil experiment (he discovered that some rays he shot through gold foil were deflected back; ie the existence of concentrated areas in an atom, ie the nucleus). Then we get into the information on electrons. We must start with discovery (Thomson). Heres where it gets complicated. Electrons don't <em>actually </em>orbit the nucleus, they exist in electron clouds. So it would be Bohr, who came up with the idea that electron exist outside the nucleus, then Schrodinger, who elaborated on Bohr's theory. Hope this helps!
Nat, Junior
Accel + AP Chem student
Answer:
In science, amodel is a representation of an idea, an object or even a process or a system that is used to describe and explain phenomena that cannot be experienced directly. Models are central to what scientists do, both in their research as well as when communicating their explanations.
Explanation:
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.