1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
12

The girls in Lana’s troop set a goal to sell 1,000 boxes of cookies this year. There are 13 girls in the troop. At least how man

y boxes of cookies should each girl sell to reach their goal?
Mathematics
2 answers:
erik [133]3 years ago
8 0

Answer:

77 boxes

Step-by-step explanation

Hello there! Let's solve this problem together:

First, we will review our numbers.

13 girls have to sell 1,000 boxes.

Now, we will do the math.

We will solve this problem by dividing.

We will keep multiply by one until we reach 1000 or more.

They have to each sell at least 77 boxes.

Yuri [45]3 years ago
3 0

Answer:

77 boxes

Step-by-step explanation:

Take the total number of boxes and divide by the number of girls

1000 boxes / 13 girls

76.92307692

Round up

77 boxes

Check

77*13 = 1001 boxes

You might be interested in
If a ball is thrown upward at 29.4 meters per second from the top of a building that is 80 meters high, the height of the ball c
BARSIC [14]

Answer:

<h2>124.1m</h2>

Step-by-step explanation:

29.4 per sec > Building 80m

Height = S = 4.9t^2 + 29.4t + 80

Solve for t:

t = 1.24 (approximately)

If t needed coordinates / solve using the quadratic formula:

t = (1.24 , -7.24)

<h3>The ball's maximum height is 124.1 meters.</h3>
3 0
3 years ago
Hassan needs blank gallons of gas
ziro4ka [17]

Answer:

Hassan will need 12 gallons of gas

Step-by-step explanation:

402 divided by 33.& is 12. he will need 12 gallons of gas

6 0
3 years ago
Read 2 more answers
The alkalinity level of water specimens collected from the Han River in Seoul, Korea, has a mean of 50 milligrams per liter and
Sati [7]

Answer:

a) 94.06% probability that a water specimen collected from the river has an alkalinity level exceeding 45 milligrams per liter.

b) 94.06% probability that a water specimen collected from the river has an alkalinity level below 55 milligrams per liter.

c) 50.98% probability that a water specimen collected from the river has an alkalinity level between 48 and 52 milligrams per liter.

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

\mu = 50, \sigma = 3.2

a. exceeding 45 milligrams per liter.

This probability is 1 subtracted by the pvalue of Z when X = 45. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{45 - 50}{3.2}

Z = -1.56

Z = -1.56 has a pvalue of 0.0594.

1 - 0.0594 = 0.9406

94.06% probability that a water specimen collected from the river has an alkalinity level exceeding 45 milligrams per liter.

b. below 55 milligrams per liter.

This probability is the pvalue of Z when X = 55.

Z = \frac{X - \mu}{\sigma}

Z = \frac{55 - 50}{3.2}

Z = 1.56

Z = 1.56 has a pvalue of 0.9604.

94.06% probability that a water specimen collected from the river has an alkalinity level below 55 milligrams per liter.

c. between 48 and 52 milligrams per liter.

This is the pvalue of Z when X = 52 subtracted by the pvalue of Z when X = 48. So

X = 52

Z = \frac{X - \mu}{\sigma}

Z = \frac{52 - 50}{3.2}

Z = 0.69

Z = 0.69 has a pvalue of 0.7549

X = 48

Z = \frac{X - \mu}{\sigma}

Z = \frac{48 - 50}{3.2}

Z = -0.69

Z = -0.69 has a pvalue of 0.2451

0.7549 - 0.2451 = 0.5098

50.98% probability that a water specimen collected from the river has an alkalinity level between 48 and 52 milligrams per liter.

4 0
3 years ago
Find the interest due on $1,200 at 8% for 240 days
Ratling [72]
The interest rate due is $63.12. Hope that helps you.
5 0
3 years ago
Write each product using an exponent. 9 x 9 x 9 x 9 x9<br> (Will be giving brainliest)
iogann1982 [59]

Answer: 9^ 5

Step-by-step explanation: since there is 5 9’s multiplied by each other, it would be 9 to the 5th power.

8 0
3 years ago
Other questions:
  • What is the least common factor of 27,48, and 66
    12·1 answer
  • Solve the system of equations.<br> y=6x+21<br> y=2x+37
    14·1 answer
  • I need help please thanks <br> find x when y = 18, if y = 9 when x = 8 <br> ASAP PLEASE
    11·2 answers
  • There are two fruit trees located at (3,0) and (–3, 0) in the backyard plan. Maurice wants to use these two fruit trees as the f
    15·1 answer
  • The equation of the line through (3,-4) with slope 2/3 is?
    5·1 answer
  • M &lt;2=x+94 what does x equal
    13·1 answer
  • A mailbox that is feet tall casts a shadow that is 6 feet long. At the same time, a nearby ferris wheel casts a shadow 84 feet l
    7·1 answer
  • 4. What is the value of the expression 72 + (33 + 12) 23 a. 3 b. 8 C. 9 d. 11​
    13·1 answer
  • What is the mean, outlier &amp; mean without outlier for 4; 4; 5; 6; 8; 9; 27
    14·1 answer
  • Solve For X, using the given triangle.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!