There are 0.566 moles of carbonate in sodium carbonate.
<h3>CALCULATE MOLES:</h3>
- The number of moles of carbonate (CO3) in sodium carbonate (Na2CO3) can be calculated by dividing the mass of carbonate in the compound by the molar mass of the compound.
- no. of moles of CO3 = mass of CO3 ÷ molar mass of Na2CO3
- Molar mass of Na2CO3 = 23(2) + 12 + 16(3)
- = 46 + 12 + 48 = 106g/mol
- mass of CO3 = 12 + 48 = 60g
- no. of moles of CO3 = 60/106
- no. of moles of CO3 = 0.566mol
- Therefore, there are 0.566 moles of carbonate in sodium carbonate.
Learn more about number of moles at: brainly.com/question/1542846
The answer is D. Okay l hope this helps
Regard the principle of utilization of two gas.
Make a consistent control of hardware containing gas.
Make a consistent control of weight diminishing valves giving gas.
No smoking zone.
Among formic acid (HCOOH ) and sulfuric acid (H₂SO₄), formic acid is the weak acid. Acidic strength of any acid is the tendency of that acid to loose proton. Among these two acids formic acid has a pKa value of 3.74 greater than that of sulfuric acid i.e. -10. Remember! Greater the pKa value of acid weaker is that acid and vice versa. Below I have drawn the Ionization of both acids to corresponding conjugate bases and protons. The structures below with charges are drawn in order to explain the reason for strength. As it is seen in charged structure of formic acid, there is one positive charge on carbon next to oxygen carrying proton. The electron density is shifted toward carbon as it is electron deficient and demands more electron hence, attracting electron density from oxygen and making the oxygen hydrogen bond more polar. While, in case of sulfuric acid it is depicted that Sulfur attached to oxygen containing proton has 2+ charge, means more electron deficient as compared to carbon of formic acid, hence, more electron demanding and strongly attracting electrons from oxygen and making the oxygen hydrogen bond very polar and highly ionizable.

Saturated fat, milk, cheese, and meat.