Electromagnetic energy would be your answer :)
The empirical formula is K₂O.
The empirical formula is the <em>simplest whole-number ratio</em> of atoms in a compound.
The <em>ratio of atom</em>s is the same as the <em>ratio of moles</em>.
So, our job is to calculate the <em>molar ratio</em> of K to O.
Step 1. Calculate the <em>moles of each element
</em>
Moles of K = 32.1 g K × (1 mol K/(39.10 g K =) = 0.8210 mol K
Moles of O = 6.57 g O × (1 mol O/16.00 g O) = 0.4106 mol 0
Step 2. Calculate the <em>molar ratio of each elemen</em>t
Divide each number by the smallest number of moles and round off to an integer
K:O = 0.8210:0.4106 = 1.999:1 ≈ 2:1
Step 3: Write the <em>empirical formula
</em>
EF = K₂O
The answer is +1! Have a great day!
Answer: 43.3 l
Explanation:
1) Chemical equation:
2 Li(s) + 2 H₂O (l) → 2LiOH(aq) + H₂ (g)
2) Mole ratios:
2 mol Li : 2 mol H₂O : 2 mol LiOH : 1 mol H₂
3) Number of moles of Li that react
n = mass in grams / atomic mass = 24.6g / 6.941 g/mol = 3.54 moles
4) Yield
Proportion:
2 mol Li / 1 mol H₂ = 3.54 mol Li/ x
⇒ x = 3.54 mol Li × 1 mol H / 2 mol Li = 1.77 mol H₂
4) Ideal gas equation
PV = nRT ⇒ V = nRT / P
V = 1.77 mol × 0.0821 [atm×l / (mol×K)] × 301 K / 1.01 atm = 43.3 l
V = 43.3 l ← answer
I would say carpool why because you don't know what the hybrid car runs on
<span />