Answer:
i believe it is in the 200
Explanation:
<span>Oxidation is the loss of electrons and corresponds to an increase in oxidation state. The reduction is the gain of electrons and corresponds to a decrease in oxidation state. Balancing redox reactions can be more complicated than balancing other types of reactions because both the mass and charge must be balanced. Redox reactions occurring in aqueous solutions can be balanced by using a special procedure called the half-reaction method of balancing. In this procedure, the overall equation is broken down into two half-reactions: one for oxidation and the other for reduction. The half-reactions are balanced individually and then added together so that the number of electrons generated in the oxidation half-reaction is the same as the number of electrons consumed in the reduction half-reaction.</span>
Question:
a. a direct linear relationship
b. an inverse linear relationship
c. a direct nonlinear relationship
d. an inverse nonlinear relationship
Answer:
The correct option is;
d. An inverse nonlinear relationship
Explanation:
From the universal gas equation, we have;
P·V = n·R·T
Where we have the temperature, T and the number of moles, n constant, therefore, we have
P×V = Constant, because, R, the universal gas constant is also constant, hence;
P×V = C

Since P varies with V then the graphical relationship will be an inverse nonlinear as we have
V P C
1 5 5
2 2.5 5
3 1.67 5
4 1.25 5
5 1 5
6 0.83 5
7 0.7 5
8 0.63 5
9 0.56 5
10 0.5 5
Where:
V = Volume
P = Pressure
C = Constant = 5
P = C/V
The graph is attached.
♂️4️⃣gshjrhdbsbdjsjdbsnebrbsbxinanevrskiswnnwsjjebrhedifi
Answer:
1.6 grams
Explanation:
We need to prepare 100 mL (0.100 L) of a 0.10 M CuSO₄ solution. The required moles of CuSO₄ are:
0.100 L × 0.10 mol/L = 0.010 mol
The molar mass of CuSO₄ is 159.61 g/mol. The mass corresponding to 0.010 moles is:
0.010 mol × (159.61 g/mol) = 1.6 g
We should use 1.6 grams of CuSO₄.