<h3>
Answer:</h3>
1.43 × 10⁻²⁰ mol Li
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
8.63 × 10³ atoms Li
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1.43355 × 10⁻²⁰ mol Li ≈ 1.43 × 10⁻²⁰ mol Li
Its inorganic as MgCO3 is contains no carbon more hydrogen which is a crutial component of all organic compounds
Answer:
π = 14.824 atm
Explanation:
wt % = ( w NaCL / w sea water ) * 100 = 3.5 %
assuming w sea water = 100 g = 0.1 Kg
⇒ w NaCl = 3.5 g
osmotic pressure ( π ):
∴ T = 20 °C + 273 = 293 K
∴ C ≡ mol/L
∴ density sea water = 1.03 Kg/L....from literature
⇒ volume sea water = 0.1 Kg * ( L / 1.03 Kg ) = 0.097 L sln
⇒ mol NaCl = 3.5 g NaCL * ( mol NaCL / 58.44 g ) = 0.06 mol
⇒ C NaCl = 0.06 mol / 0.097 L = 0.617 M
⇒ π = 0.617 mol/L * 0.082 atm L / K mol * 293 K
⇒ π = 14.824 atm
Answer: polar solvent
Explanation:
Polarity can be said to mean, charge separation. Thus, polar solvents are solvents that have charge separation and the ability to solvate i.e dissolve ions.
A polar solvent molecule has slight electrical charge as a result of its shape. A typical and most common example is water, with an oxygen and two hydrogen atoms. The two hydrogen atoms are at an angle to the single oxygen atom. Water is the classic polar solvent. The oxygen atom tends to polarize electron density to itself.