Answer:
Time it will take to drain the entire tower = 2.8minutes
Step-by-step explanation:
The question is incomplete as the volume of the tower was not indicated.
Let's consider the following question:
If there are 7.48 gallons in a cubic foot, and the volume of the tower is around 36000in cubed. Residents of the apartment building are using the water from the tower at an average rate of 56 gallons per minute, determine how long it will take to drain the entire tower.
Solution:
Volume = 36000in³
Conversion of in³ to ft³
1 inch = 0.0833 feet
12 inch = 1 ft
1 ft³ = 1ft × 1ft × 1ft
= 12 in x 12 in x 12 in = 1728 in³
36000in³ × [(1ft³)/(1728 in³) = (36000/1728)ft³
= 20.833ft³
Volume = 20.833ft³
There are 7.48 gallons in a cubic foot
In 20.833ft³ = 20.833ft³× (7.48 gallons/1ft³)
= 20.833× 7.48gallons
Volume = 155.83 gallons
The rate of usage = 56 gallons per minute
The rate of usage for 155.83 gallons = 155.83 gallons × (1min/56gallons)
= (155.83/56)minute
= 2.8minutes
Time it will take to drain the entire tower = 2.8minutes
((-9+14)/2, (-20+12)/2)
(5/2,-8/2)
(5/2,-4)
Answer:
The length of a pen.
Step-by-step explanation:
A length of a pen is around three inches and is reasonable but all of the others are way too big and can be measured in feet or miles.
Answer:
Step-by-step explanation:
Given that there is a function of x,

Let us find first and second derivative for f(x)

When f'(x) =0 we have tanx = 1 and hence
a) f'(x) >0 for I and III quadrant
Hence increasing in 
and decreasing in 


Hence f has a maxima at x = pi/4 and minima at x = 3pi/4
b) Maximum value = 
Minimum value = 
c)
f"(x) =0 gives tanx =-1

are points of inflection.
concave up in (3pi/4,7pi/4)
and concave down in (0,3pi/4)U(7pi/4,2pi)