Answer:
(1, 3)
Step-by-step explanation:
You are given the h coordinate of the vertex as 1, but in order to find the k coordinate, you have to complete the square on the parabola. The first few steps are as follows. Set the parabola equal to 0 so you can solve for the vertex. Separate the x terms from the constant by moving the constant to the other side of the equals sign. The coefficient HAS to be a +1 (ours is a -2 so we have to factor it out). Let's start there. The first 2 steps result in this polynomial:
. Now we factor out the -2:
. Now we complete the square. This process is to take half the linear term, square it, and add it to both sides. Our linear term is 2x. Half of 2 is 1, and 1 squared is 1. We add 1 into the set of parenthesis. But we actually added into the parenthesis is +1(-2). The -2 out front is a multiplier and we cannot ignore it. Adding in to both sides looks like this:
. Simplifying gives us this:

On the left we have created a perfect square binomial which reflects the h coordinate of the vertex. Stating this binomial and moving the -3 over by addition and setting the polynomial equal to y:

From this form,

you can determine the coordinates of the vertex to be (1, 3)
Answer:6x2=12-10=2 and 4×+3=12
Step-by-step explanation:
Divide 5.6 by 8 which is 0.7. Since the image of the ant is 8 times bigger we need to divide by 8 to make it actual size.
The ant's actual length is 0.7 cm.
Answer: 12 cm
Step-by-step explanation:
The masses of the spheres are proportional to their volums, and the cube of the ratio is k^3=135/5=27 ==> k=3
The greater radius is 3*4=12 (cm)