Answer:
A
Explanation:
The best method that will yield significantly more accurate result is to use spectrophotometer to read the turbidity of the sample and increase in turbidity is associated with increase biomass.
Answer:
The critical length of surface flaw = 6.176 mm
Explanation:
Given data-
Plane strain fracture toughness Kc = 29.6 MPa-m1/2
Yield Strength = 545 MPa
Design stress. =0.3 × yield strength
= 0.3 × 545
= 163.5 MPa
Dimensionless parameter. Y = 1.3
The critical length of surface flaw is given by
= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2
Now putting values in above equation we get,
= 1/3.14( 29.6 / 1.3 × 163.5)^2
=6.176 × 10^-3 m
=6.176 mm
Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s
Wait why do you want me to