Answer & Explanation:
Los electrones externos se encuentran más lejos del núcleo. El número de electrones en la capa más externa (electrones de valencia) de un átomo en particular determina su reactividad (tendencia) a formar enlaces químicos con otros átomos.
Los electrones internos son los más cercanos al núcleo. Protegen los electrones de valencia del núcleo, reduciendo la carga nuclear efectiva.
Answer:
Dana filtered the sample and larger granules of the sample were left behind.
Explanation:
If a substance is pure, it will have a uniform composition throughout. It will not separate into particles of various sizes.
One of the characteristics of pure substances is that they are homogeneous. A mixture is definitely made up of particles of various sizes.
Since the particles was filtered and larger granules were left behind, the sample has been separated by a physical method (filtration). Only a mixture can be separated by physical methods. It is not a pure substance.
Answer:
Cu
Explanation:
In the given reaction of the addition of copper to nitric acid,
Cu(s) + 4HNO3(aq) -> Cu(NO3)2(aq) + 2NO2(g) + 2H2O(l)
Cu or copper would be characterized as the reducing agent in this reaction. It is the chemical substance that is losing electrons and being oxidized due to this reduction/loss in this redox reaction as it is the metal that loses electrons by reacting with the non-metals.
Answer:
57.48%
Explanation:
Calculate the mass of 1 mole of malachite:
MM Cu = 63.55
MM O = 16.00
MM H = 1.01
MM C = 12.01

A mole of malachite has:
2 moles of Cu
5 moles of O
2 moles of H
1 mole of C
MW Malachite = 2*MM(CU) + 5*MM(O) + 2*MM(H) + 1 *MM(C)
MW Malachite = 2*63.55 + 5*16.00 + 2*1.01 + 1*12.01
MW Malachite = 221.13
Mass of Cu in a mole of Malachite = 2*MM(CU) = 127.1
Now divide the mass of Cu by the mass of Malachite

Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).