Answer:
N₂ = 19 turns
Explanation:
A transform is a system with two different windings where the variation of the magnetic beam is the same, if there are no losses in the system we can use Faraday's law
V₁ = -N₁
v₂ = - N₂ \frac{d \Phi_B }{dt}
in this case we look for the number of turns in the second winding
N₂2 =
calculate us
N₂ = 360 6.30/ 120
N₂ = 18.9 turn
The number of turns must be an integer
N₂ = 19 turns
Answer:
Explanation:
1 g is 9.8 m/s^2 the problem wants the results in km/h so we'll fix that really quick.
9.8 m/s^2 (1 km/1000m)(60 sec/1 min)^2(60 min/1 hour)^2 = 127008 km/hour^2
Now, I'm assuming the ship is starting from rest, and hopefully you know your physics equations. We are going to use vf = vi + at. Everything is just given, or we can assume, so I'll just solve.
vf = vi + at
vf = 0 + 127008 km/hour^2 * 24 hours
vf = 3,048,192 km/hour
If there's anything that doesn't make sense let me know.
Answer:
ggy h Jr scythe fund the CT h hytgy6fhhj

<h3>A boy who is riding his bicycle, moves with an initial velocity of 5 m/s. Ten second later, he is moving at 15 m/s. What is his acceleration?</h3>

<h3>Initial Velocity (<em>u</em>) - 5 m/s</h3><h3>Final Velocity (<em>v</em>) - 15 m/s</h3><h3>Time (<em>t</em>) - 10 sec</h3>

<h3>If the velocity of an object changes from an initial value <em>u </em>to the final value <em>v </em>in time <em>t,</em><em> </em>the acceleration <em>a</em> is, </h3><h3>

</h3><h3>

</h3>


<h3>His acceleration is </h3><h3>

</h3><h3 /><h3 />