Answer:
Ratios to roses to lilies....6:9
Reduced.....2:3
Step-by-step explanation:
Pretty simple doesn't need explaining
You are estimating each into whole numbers. They are already whole numbers, and so just subtract.
428,734 - 175,842 = 252892
252,892 is your answer
hope this helps
Answer:
4.) Step 2; it should be m∠o + m∠p = 180 degrees (supplementary angles)
Step-by-step explanation:
o and p are supplementary angles, and therefore add up to 180 degrees.
The given system of equations in augmented matrix form is
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\-6&1&2&4&-12\\1&-3&-3&5&-20\\-2&5&6&0&12\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C-6%261%262%264%26-12%5C%5C1%26-3%26-3%265%26-20%5C%5C-2%265%266%260%2612%5Cend%7Barray%7D%5Cright%5D)
If you need to solve this, first get the matrix in RREF:
- Add 2(row 1) to row 2, row 1 to -3(row 3), and 2(row 1) to 3(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&11&5&-13&37\\0&19&10&4&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%2611%265%26-13%2637%5C%5C0%2619%2610%264%26-10%5Cend%7Barray%7D%5Cright%5D)
- Add 11(row 2) to -5(row 3), and 19(row 1) to -5(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&-164&132&-1052\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%26-164%26132%26-1052%5Cend%7Barray%7D%5Cright%5D)
- Add 164(row 3) to -91(row 4):
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&13080&-39240\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%2613080%26-39240%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 4 by 1/13080:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&153&-823\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%26153%26-823%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -153(row 4) to row 3:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&-91&0&-364\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%26-91%260%26-364%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&-6&8&-58\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%26-6%268%26-58%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add 6(row 3) and -8(row 4) to row 2:
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&5&0&0&-10\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%265%260%260%26-10%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}3&2&-4&2&-23\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%262%26-4%262%26-23%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
- Add -2(row 2), 4(row 3), and -2(row 4) to row 1:
![\left[\begin{array}{cccc|c}3&0&0&0&3\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D3%260%260%260%263%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{cccc|c}1&0&0&0&1\\0&1&0&0&-2\\0&0&1&0&4\\0&0&0&1&-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D1%260%260%260%261%5C%5C0%261%260%260%26-2%5C%5C0%260%261%260%264%5C%5C0%260%260%261%26-3%5Cend%7Barray%7D%5Cright%5D)
So the solution to this system is
.
To represent the solution set of a linear equation parametrically, we introduce other parameters like s and t for the free variables.
Every linear equation has n - 1 free variables where n is the number of variables.
For x + y + z = 2, we have 3 variables and 3 - 1 = 2 free variables.
First, let y and z be the free variables, we first solve the linear equation for x to get:
x = 2 - y - z
Therefore , the parametric representation of the solution set is given by :
x = 2 - s -t
y = s
z = t
Learn more about The linear Equation at:
brainly.com/question/17748588
#SPJ4