Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
They all produce light and stuff
This problem uses the relationships among current
I, current density
J, and drift speed
vd. We are given the total of electrons that pass through the wire in
t = 3s and the area
A, so we use the following equation to to find
vd, from
J and the known electron density
n,
so:

<span>The current
I is any motion of charge from one region to another, so this is given by:
</span>

The magnitude of the current density is:

Being:

<span>
Finally, for the drift velocity magnitude vd, we find:
</span>
Notice: The current I is very high for this wire. The given values of the variables are a little bit odd
Light from other stars take longer to reach the earth because they are farther than our sun.
The distance between the two adjacent nodes = λ/2.
<h3>What is Wavelength?</h3>
A periodic wave's wavelength is its spatial period, or the length over which its form repeats. It is a property of both travelling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda (λ) is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
The distance between the two adjacent nodes = λ/2.
for the standing wave ,the distance between any two adjacent nodes or antinodes is 1/2 λ.
to learn more about the wavelength go to - brainly.com/question/6297363
#SPJ4